Условия равновесия механической системы. Равновесие механической системы

Как следует из примера изучения колебательного движения материальной точки, собственное движение системы вызывается упругой силой. Ранее было показано, что упругая сила принадлежит к потенциальному силовому полю. Следовательно, переходя к изучению собственных колебательных движений механических систем, следует предположить, что такие движения вызываются силами потенциального поля. Отсюда, если система обладает s степенями свободы, то обобщенные силы ее запишутся через силовую функцию U или потенциальную энергию П в виде:

Как следует из изучения движения точки, колебания ее происходят около положения равновесия. Колебательное движение системы также будет происходить около положения ее равновесия, которое характеризуется условиями.

Эти условия указывают на то, что колебательные движения системы могут происходить около положений, характеризуемых относительным экстремумом силовой функции или потенциальной энергии системы. Однако не около всякого положения равновесия возможно колебательное движение системы.

Определение устойчивого положения равновесия механической системы

Пусть механическая система состоит из материальных точек, которые находятся в равновесии под действием приложенных к ним сил. Дадим точкам этой системы малые отклонения от положения равновесия и малые начальные скорости. Тогда система придет в движение. Если во все время, следующее за нарушением равновесия, точки системы остаются в непосредственной близости к своему равновесному положению, то это положение называется устойчивым. В противном случае равновесие системы называется неустойчивым. Говорить о колебаниях системы можно только в том случае, когда эти колебания происходят около положения устойчивого равновесия. Если положение системы неустойчиво, т. е. если при малом отклонении от положения равновесия и малых скоростях система отходит от него еще дальше, то нельзя говорить о колебаниях системы вблизи этого положения. Следовательно, изучение колебаний системы следует начать с установления критерия устойчивости равновесия механической системы.

Критерий устойчивости равновесия консервативной механической системы

Критерий устойчивости равновесия консервативной системы устанавливает теорема Лагранжа - Дирихле, которая состоит в следующем: если механическая система обладает стационарными связями и консервативна и если в положении равновесия этой системы ее потенциальная энергия имеет минимум (т. е. силовая функция имеет максимум), то равновесие системы является устойчивым.

Докажем эту теорему. Пусть положение механической системы определяется обобщенными координатами которые отсчитываются от положения равновесия. Тогда в этом положении будем иметь:

Величины можно рассматривать как координаты точки в -мерном пространстве. Тогда каждому положению системы будет соответствовать определенная точка этого пространства. В частности, положению равновесия будет соответствовать начало координат О.

Потенциальную энергию П будем отсчитывать от положения равновесия, полагая, что в этом положении что не нарушает общности рассуждений, так как потенциальная энергия определяется с точностью до произвольной постоянной.

Зададимся каким-нибудь положительным числом и опишем из точки О сферу радиуса . Область, ограничиваемую этой сферой, обозначим через Число будем считать произвольным, но достаточно малым. Тогда для любой точки на границе области D будет выполняться неравенство:

так как в точке О функция П равна нулю и имеет минимум.

Пусть наименьшее значение П на границе области D равно Р. Тогда для любой точки, принадлежащей этой границе, будем иметь

Выведем теперь систему из положения равновесия, сообщив ее точкам столь малые начальные отклонения и столь малые начальные скорости, чтобы выполнялись неравенства:

где - начальные значения потенциальной и кинетической энергии. Тогда будем иметь:

Но при дальнейшем движении системы в силу закона сохранения механической энергии, который справедлив для консервативных систем со стационарными связями, будет выполняться равенство.

Равновесием механической системы называют такое её состояние, при котором все точки рассматриваемой системы покоятся по отношению к выбранной системе отсчета.

Моментом силы относительно какой‑либо оси называют произведение величины этой силы F на плечо d.

Проще всего выяснить условия равновесия на примере простейшей механической системы - материальной точки. Согласно первому закону динамики (см. Механика), условием покоя (или равномерного прямолинейного движения) материальной точки в инерциальной системе координат является равенство нулю векторной суммы всех приложенных к ней сил.

При переходе к более сложным механическим системам одного этого условия для их равновесия оказывается недостаточно. Кроме поступательного движения, к которому приводят нескомпенсированные внешние силы, сложная механическая система может совершать вращательное движение или деформироваться. Выясним условия равновесия абсолютно твердого тела - механической системы, состоящей из собрания частиц, взаимные расстояния между которыми не изменяются.

Возможность поступательного движения (с ускорением) механической системы можно устранить так же, как и в случае с материальной точкой, потребовав равенства нулю суммы сил, приложенных ко всем точкам системы. Это и есть первое условие равновесия механической системы.

В нашем случае твердое тело деформироваться не может, поскольку мы условились, что взаимные расстояния между его точками не изменяются. Но в отличие от материальной точки к абсолютно твердому телу можно приложить пару равных и противоположно направленных сил в разных его точках. При этом поскольку сумма этих двух сил равна нулю, то рассматриваемая механическая система поступательного движения совершать не будет. Однако очевидно, что под действием такой пары сил тело начнет вращаться относительно некоторой оси со всевозрастающей угловой скоростью.

Возникновение в рассматриваемой системе вращательного движения обусловлено наличием нескомпенсированных моментов сил. Моментом силы относительно какой‑либо оси называется произведение величины этой силы $F$ на плечо $d,$ т. е. на длину перпендикуляра, опущенного из точки $O$ (см. рис.), через которую проходит ось, на направление силы. Отметим, что момент силы при таком определении - алгебраическая величина: он считается положительным, если сила приводит к вращению против часовой стрелки, и отрицательным - в противном случае. Таким образом, второе условие равновесия твердого тела заключается в требовании равенства нулю суммы моментов всех сил относительно любой оси вращения.

В случае, когда оба найденных условия равновесия выполнены, твердое тело будет пребывать в состоянии покоя, если в момент начала действия сил скорости всех его точек были равны нулю. В противном случае оно будет совершать равномерное движение по инерции.

Рассмотренное определение равновесия механической системы ничего не говорит о том, что произойдет, если система чуть‑чуть выйдет из положения равновесия. При этом имеется три возможности: система вернется в свое прежнее состояние равновесия; система, несмотря на отклонение, не изменит своего состояния равновесия; система выйдет из состояния равновесия. Первый случай называют устойчивым состоянием равновесия, второй - безразличным, третий - неустойчивым. Характер положения равновесия определяется зависимостью потенциальной энергии системы от координат. На рисунке показаны все три типа равновесия на примере тяжелого шарика, находящегося в углублении (устойчивое равновесие), на гладком горизонтальном столе (безразличное), на вершине бугорка (неустойчивое).

Изложенный выше подход к проблеме равновесия механической системы рассматривался учеными еще в древнем мире. Так, закон равновесия рычага (т. е. твердого тела с закрепленной осью вращения) был найден Архимедом в III в. до н. э.

В 1717 г. Иоганн Бернулли разработал совершенно иной подход к нахождению условий равновесия механической системы - метод виртуальных перемещений. В основе его лежит вытекающее из закона сохранения энергии свойство сил реакций связей: при малом отклонении системы от положения равновесия полная работа сил реакций связей равна нулю.

При решении задач статики (см. Механика) на основании описанных выше условий равновесия существующие в системе связи (опоры, нити, стержни) характеризуются возникающими в них силами реакции. Необходимость учета этих сил при определении условий равновесия в случае систем, состоящих из нескольких тел, приводит к громоздким расчетам. Однако благодаря равенству нулю работы сил реакции связей при малых отклонениях от положения равновесия можно избежать рассмотрения этих сил вообще.

Кроме сил реакции на точки механической системы действуют и внешние силы. Какова их работа при малом отклонении от положения равновесия? Так как система первоначально покоится, то для любого её перемещения необходимо совершить некоторую положительную работу. В принципе эту работу могут совершать как внешние силы, так и силы реакции связей. Но, как мы уже знаем, полная работа сил реакции равна нулю. Поэтому для того, чтобы система вышла из состояния равновесия, суммарная работа внешних сил при любом возможном перемещении должна быть положительной. Следовательно, условие невозможности движения, т. е. условие равновесия, можно сформулировать как требование неположительности полной работы внешних сил при любом возможном перемещении: $ΔA≤0.$

Допустим, что при перемещениях точек системы $Δ\overrightarrow{γ}_1…\ Δ\overrightarrow{γ}_n$ сумма работ внешних сил оказалась равной $ΔA1.$ А что произойдет, если система совершит перемещения $−Δ\overrightarrow{γ}_1,−Δ\overrightarrow{γ}_2,\ …,−Δ\overrightarrow{γ}_n?$ Эти перемещения возможны так же, как и первые; однако работа внешних сил теперь изменит знак: $ΔA2 =−ΔA1.$ Рассуждая аналогично предыдущему случаю, мы придем к выводу, что теперь условие равновесия системы имеет вид: $ΔA1≥0,$ т. е. работа внешних сил должна быть неотрицательной. Единственная возможность «примирить» два этих почти противоречивых условия - потребовать точного равенства нулю полной работы внешних сил при любом возможном (виртуальном) перемещении системы из положения равновесия: $ΔA=0.$ Под возможным (виртуальным) перемещением тут подразумевается бесконечно малое мысленное перемещение системы, которое не противоречит наложенным на неё связям.

Итак, условие равновесия механической системы в виде принципа виртуальных перемещений формулируется следующим образом:

«Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ действующих на систему сил при любом возможном перемещении была равна нулю».

С помощью принципа виртуальных перемещений решаются задачи не только статики, но и гидростатики, и электростатики.

Равновесием механической системы называют такое ее состояние, при котором все точки рассматриваемой системы покоятся по отношению к выбранной системе отсчета.

Проще всего выяснить условия равновесия на примере простейшей механической системы - материальной точки. Согласно первому закону динамики (см. Механика), условием покоя (или равномерного прямолинейного движения) материальной точки в инерциальной системе координат является равенство нулю векторной суммы всех приложенных к ней сил.

При переходе к более сложным механическим системам одного этого условия для их равновесия оказывается недостаточно. Кроме поступательного движения, к которому приводят нескомпенсированные внешние силы, сложная механическая система может совершать вращательное движение или деформироваться. Выясним условия равновесия абсолютно твердого тела - механической системы, состоящей из собрания частиц, взаимные расстояния между которыми не изменяются.

Возможность поступательного движения (с ускорением) механической системы можно устранить так же, как и в случае с материальной точкой, потребовав равенства нулю суммы сил, приложенных ко всем точкам системы. Это и есть первое условие равновесия механической системы.

В нашем случае твердое тело деформироваться не может, поскольку мы условились, что взаимные расстояния между его точками не изменяются. Но в отличие от материальной точки к абсолютно твердому телу можно приложить пару равных и противоположно направленных сил в разных его точках. При этом поскольку сумма этих двух сил равна нулю, то рассматриваемая механическая система поступательного движения совершать не будет. Однако очевидно, что под действием такой пары сил тело начнет вращаться относительно некоторой оси со всевозрастающей угловой скоростью.

Возникновение в рассматриваемой системе вращательного движения обусловлено наличием нескомпенсированных моментов сил. Моментом силы относительно какой-либо оси называется произведение величины этой силы F на плечо d, т. е. на длину перпендикуляра, опущенного из точки О (см. рис.), через которую проходит ось, на направление силы. Отметим, что момент силы при таком определении - алгебраическая величина: он считается положительным, если сила приводит к вращению против часовой стрелки, и отрицательным - в противном случае. Таким образом, второе условие равновесия твердого тела заключается в требовании равенства нулю суммы моментов всех сил относительно любой оси вращения.

В случае, когда оба найденных условия равновесия выполнены, твердое тело будет пребывать в состоянии покоя, если в момент начала действия сил скорости всех его точек были равны нулю.

В противном случае оно будет совершать равномерное движение по инерции.

Рассмотренное определение равновесия механической системы ничего не говорит о том, что произойдет, если система чуть-чуть выйдет из положения равновесия. При этом имеется три возможности: система вернется в свое прежнее состояние равновесия; система, несмотря на отклонение, не изменит своего состояния равновесия; система выйдет из состояния равновесия. Первый случай называют устойчивым состоянием равновесия, второй - безразличным, третий - неустойчивым. Характер положения равновесия определяется зависимостью потенциальной энергии системы от координат. На рисунке показаны все три типа равновесия на примере тяжелого шарика, находящегося в углублении (устойчивое равновесие), на гладком горизонтальном столе (безразличное), на вершине бугорка (неустойчивое) (см. рис. на с. 220).

Изложенный выше подход к проблеме равновесия механической системы рссматривался учеными еще в древнем мире. Так, закон равновесия рычага (т. е. твердого тела с закрепленной осью вращения) был найден Архимедом в III в. до н. э.

В 1717 г. Иоганн Бернулли разработал совершенно иной подход к нахождению условий равновесия механической системы - метод виртуальных перемещений. В основе его лежит вытекающее из закона сохранения энергии свойство сил реакций связей: при малом отклонении системы от положения равновесия полная работа сил реакций связей равна нулю.

При решении задач статики (см. Механика) на основании описанных выше условий равновесия существующие в системе связи (опоры, нити, стержни) характеризуются возникающими в них силами реакции. Необходимость учета этих сил при определении условий равновесия в случае систем, состоящих из нескольких тел, приводит к громоздким расчетам. Однако благодаря равенству нулю работы сил реакции связей при малых отклонениях от положения равновесия можно избежать рассмотрения этих сил вообще.

Кроме сил реакции на точки механической системы действуют и внешние силы. Какова их работа при малом отклонении от положения равновесия? Так как система первоначально покоится, то для любого ее перемещения необходимо совершить некоторую положительную работу. В принципе эту работу могут совершать как внешние силы, так и силы реакции связей. Но, как мы уже знаем, полная работа сил реакции равна нулю. Поэтому для того, чтобы система вышла из состояния равновесия, суммарная работа внешних сил при любом возможном перемещении должна быть положительной. Следовательно, условие невозможности движения, т. е. условие равновесия, можно сформулировать как требование неположительности полной работы внешних сил при любом возможном перемещении: .

Допустим, что при перемещениях точек системы сумма работ внешних сил оказалась равной . А что произойдет, если система совершит перемещения - Эти перемещения возможны так же, как и первые; однако работа внешних сил теперь изменит знак: . Рассуждая аналогично предыдущему случаю, мы придем к выводу, что теперь условие равновесия системы имеет вид: , т. е. работа внешних сил должна быть неотрицательной. Единственная возможность «примирить» два этих почти противоречивых условия - потребовать точного равенства нулю полной работы внешних сил при любом возможном (виртуальном) перемещении системы из положения равновесия: . Под возможным (виртуальным) перемещением тут подразумевается бесконечно малое мысленное перемещение системы, которое не противоречит наложенным на нее связям.

Итак, условие равновесия механической системы в виде принципа виртуальных перемещений формулируется следующим образом:

«Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ действующих на систему сил при любом возможном перемещении была равна нулю».

С помощью принципа виртуальных перемещений решаются задачи не только статики, но и гидростатики, и электростатики.


Важным случаем движения механических систем является их колебательное движение. Колебания - это повторяющиеся движения механической системы относительно некоторого ее положения, происходящие более или менее регулярно во времени. В курсовой работе рассматривается колебательное движение механической системы относительно положения равновесия (относительного или абсолютного) .

Механическая система может совершать колебания в течение достаточно длительного промежутка времени только вблизи положения устойчивого равновесия. Поэтому перед тем, как составить уравнения колебательного движения, надо найти положения равновесия и исследовать их устойчивость.

5.1. Условия равновесия механических систем

Согласно принципу возможных перемещений (основному уравнению статики), для того, чтобы механическая система, на которую наложены идеальные, стационарные, удерживающие и голономные связи, находилась в равновесии, необходимо и достаточно, чтобы в этой системе были равны нулю все обобщенные силы:

где Q j - обобщенная сила, соответствующая j - ой обобщенной координате;

s - число обобщенных координат в механической системе.

Если для исследуемой системы были составлены дифференциальные уравнения движения в форме уравнений Лагранжа II - го рода, то для определения возможных положений равновесия достаточно приравнять обобщенные силы нулю и решить полученные уравнения относительно обобщенных координат.

Если механическая система находится в равновесии в потенциальном силовом поле, то из уравнений (5.1) получаем следующие условия равновесия:

(5.2)

Следовательно, в положении равновесия потенциальная энергия имеет экстремальное значение. Не всякое равновесие, определяемое вышеприведенными формулами, может быть реализовано практически. В зависимости от поведения системы при отклонении от положения равновесия говорят об устойчивости или неустойчивости данного положения.

5.2. Устойчивость равновесия

Определение понятия устойчивости положения равновесия было дано в конце XIX века в работах русского ученого А. М. Ляпунова . Рассмотрим это определение.

Для упрощения выкладок условимся в дальнейшем обобщенные координаты q 1 , q 2 ,..., q s отсчитывать от положения равновесия системы:

, где

Положение равновесия называется устойчивым, если для любого сколь угодно малого числа > 0 можно найти такое другое число ( ) > 0 , что в том случае, когда начальные значения обобщенных координат и скоростей не будут превышать :

значения обобщенных координат и скоростей при дальнейшем движении системы не превысят

.

Иными словами, положение равновесия системы q 1 = q 2 = ...= q s = 0 называется устойчивым , если всегда можно найти такие достаточно малые начальные значения
, при которых движение системы
не будет выходить из любой заданной сколь угодно малой окрестности положения равновесия
. Для системы с одной степенью свободы устойчивое движение системы можно наглядно изобразить в фазовой плоскости (рис. 5.1). Для устойчивого положения равновесия движение изображающей точки, начинающееся в области [- , ] , не будет в дальнейшем выходить за пределы области [- , ] .

Положение равновесия называетсяасимптотически устойчивым , если с течением времени система будет приближаться к положению равновесия, то есть

Определение условий устойчивости положения равновесия представляет собой достаточно сложную задачу [ 4 ], поэтому ограничимся простейшим случаем: исследованием устойчивости равновесия консервативных систем.

Достаточные условия устойчивости положений равновесия для таких систем определяются теоремой Лагранжа - Дирихле : положение равновесия консервативной механической системы устойчиво, если в положении равновесия потенциальная энергия системы имеет изолированный минимум .

Потенциальная энергия механической системы определяется с точностью до постоянной. Выберем эту постоянную так, чтобы в положении равновесия потенциальная энергия равнялась нулю:

П(0)= 0.

Тогда для системы с одной степенью свободы достаточным условием существования изолированного минимума, наряду с необходимым условием (5.2), будет условие

Так как в положении равновесия потенциальная энергия имеет изолированный минимум и П(0) = 0 , то в некоторой конечной окрестности этого положения

П(q) > 0 .

Функции, имеющие постоянный знак и равные нулю только при нулевых значениях всех своих аргументов, называются знакоопределенными. Следовательно, для того, чтобы положение равновесия механической системы было устойчивым необходимо и достаточно, чтобы в окрестности этого положения потенциальная энергия была положительно определенной функцией обобщенных координат.

Для линейных систем и для систем, которые можно свести к линейным при малых отклонениях от положения равновесия (линеаризовать), потенциальную энергию можно представить в виде квадратичной формы обобщенных координат [ 2, 3, 9 ]

(5.3)

где - обобщенные коэффициенты жесткости.

Обобщенные коэффициенты являются постоянными числами, которые могут быть определены непосредственно из разложения потенциальной энергии в ряд или по значениям вторых производных от потенциальной энергии по обобщенным координатам в положении равновесия:

(5.4)

Из формулы (5.4) следует, что обобщенные коэффициенты жесткости симметричны относительно индексов

Для того, чтобы выполнялись достаточные условия устойчивости положения равновесия, потенциальная энергия должна быть положительно определенной квадратичной формой своих обобщенных координат.

В математике существует критерий Сильвестра , дающий необходимые и достаточные условия положительной определенности квадратичных форм: квадратичная форма (5.3) будет положительно определенной, если определитель, составленный из ее коэффициентов, и все его главные диагональные миноры будут положительными, т.е. если коэффициенты c ij будут удовлетворять условиям

D 1 = c 11 > 0,

D 2 =
> 0 ,

D s =
> 0,

В частности, для линейной системы с двумя степенями свободы потенциальная энергия и условия критерия Сильвестра будут иметь вид

П = (),

Аналогичным образом можно провести исследование положений относительного равновесия, если вместо потенциальной энергии ввести в рассмотрение потенциальную энергию приведенной системы [ 4 ].

Механическое равновесие

Механи́ческое равнове́сие - состояние механической системы , при котором сумма всех сил , действующих на каждую её частицу, равна нулю и сумма моментов всех сил, приложенных к телу относительно любой произвольно взятой оси вращения, также равна нулю.

В состоянии равновесия тело находится в покое (вектор скорости равен нулю) в выбранной системе отсчета либо движется равномерно прямолинейно или вращается без касательного ускорения.

Определение через энергию системы

Так как энергия и силы связаны фундаментальными зависимостями , это определение эквивалентно первому. Однако определение через энергию может быть расширено для того, чтобы получить информацию об устойчивости положения равновесия.

Виды равновесия

Приведём пример для системы с одной степенью свободы . В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной . Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:

  • неустойчивое равновесие;
  • устойчивое равновесие;
  • безразличное равновесие.

Неустойчивое равновесие

В случае, когда вторая производная отрицательна, потенциальная энергия системы находится в состоянии локального максимума. Это означает, что положение равновесия неустойчиво . Если система будет смещена на небольшое расстояние, то она продолжит своё движение за счёт сил, действующих на систему.

Устойчивое равновесие

Вторая производная > 0: потенциальная энергия в состоянии локального минимума, положение равновесия устойчиво (см. Теорема Лагранжа об устойчивости равновесия). Если систему сместить на небольшое расстояние, она вернётся назад в состояние равновесия. Равновесие устойчиво, если центр тяжести тела занимает наинизшее положение по сравнению со всеми возможными соседними положениями.

Безразличное равновесие

Вторая производная = 0: в этой области энергия не варьируется, а положение равновесия является безразличным . Если система будет смещена на небольшое расстояние, она останется в новом положении.

Устойчивость в системах с большим числом степеней свободы

Если система имеет несколько степеней свободы, то может оказаться, что в сдвигах одних направлениях равновесие устойчиво, а в других - неустойчиво. Простейшим примером такой ситуации является "седловина" или "перевал" (в этом месте хорошо бы разместить картинку).

Равновесие системы с несколькими степенями свободы будет устойчивым только в том случае, если оно устойчиво во всех направлениях .


Wikimedia Foundation . 2010 .

Смотреть что такое "Механическое равновесие" в других словарях:

    механическое равновесие - mechaninė pusiausvyra statusas T sritis fizika atitikmenys: angl. mechanical equilibrium vok. mechanisches Gleichgewicht, n rus. механическое равновесие, n pranc. équilibre mécanique, m … Fizikos terminų žodynas

    - … Википедия

    Фазовые переходы Статья я … Википедия

    Состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, после чего параметры состояния системы уже не меняются со временем. Изоляция… … Большая советская энциклопедия

    РАВНОВЕСИЕ - (1) механическое состояние неподвижности тела, являющееся следствием Р. сил, действующих на него (когда сумма всех сил, действующих на тело, равна нулю, т. е. не сообщает ускорения). Различают Р.: а) устойчивое, когда при отклонении от… … Большая политехническая энциклопедия

    Состояние механич. системы, при к ром все её точки неподвижны по отношению к данной системе отсчёта. Если эта система отсчёта является инерциальной, то Р. м. наз. абсолютным, в противном случае относительным. В зависимости от поведения тела после … Большой энциклопедический политехнический словарь

    Термодинамическое равновесие состояние изолированной термодинамической системы, при котором в каждой точке для всех химических, диффузионных, ядерных, и других процессов скорость прямой реакции равна скорости обратной. Термодинамическое… … Википедия

    Равновесие - наиболее вероятное макросостояние вещества, когда переменные величины независимо от выбора остаются постоянными при полном описании системы. Различают равновесие: механическое, термодинамическое, химическое, фазовое и др.: Смотри… … Энциклопедический словарь по металлургии

    Содержание 1 Классическое определение 2 Определение через энергию системы 3 Виды равновесия … Википедия

    Фазовые переходы Статья является частью серии «Термодинамика». Понятие фазы Равновесие фаз Квантовый фазовый переход Разделы термодинамики Начала термодинамики Уравнение состояния … Википедия