Что такое хроматин? Функции хроматина. Хроматин: определение, строение и роль в делении клеток Нуклеосомы при репликации и транскрипции

Различают следующие фракции в геноме эукариот.

1. Уникальные, т.е. последовательности, представ­ленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2. Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3. Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.

4. Высокочастотные повторы, число которых достигает 10 миллионов (на геном). ДНК мышей на 70% состоит из уникальных последовательностей, на 20% – из низкочастотных и среднечастотных повторов, на 10% – из высокочастотных.

Повторы образуют так называемые семейства, под которыми понимают совокупность последовательностей, полностью или по большей части гомологичных друг другу.

Нередко из-за существенных различий в нуклеотидном составе высокочастотных повторов и остальной ДНК пер­вые образуют при центрифугировании в градиенте плот­ности хлористого цезия так называемые сателлитные пики, которые имеют большую или меньшую плавучую плотность, чем остальная ДНК. Эта фракция генома пред­ставлена небольшим (10…15) числом семейств коротких (5…12 п.н.) повторов, образующих протяженные блоки. Внутри блоков группы повторов отдельных семейств могут чередоваться друг с другом, так что сателлитная ДНК имеет как бы лоскутную структуру. Гибридизация фракций высокочастотных последовательностей с ДНК непосред­ственно на препаратах хромосом позволила установить, что эта фракция генома локализована в районах конститутивного гетерохроматина, чаще всего прицентромерного или теломерного. Еще в 30-х годах было показано, что в генетическом отношении эти районы инертны, т. е. не содержат генов. В действительности столь малые после­довательности, составляющие сателлитную ДНК, не могут кодировать ничего, кроме олигопептидов. Более того, гетерохроматические районы не транскрибируются. Таким образом, в случае высокочастотных последовательностей ДНК обнаруживается тождество молекулярной организации и генетических свойств хромосомной ДНК эукариот. Следует отметить, что эта фракция у огромного большинства видов занимает не более 10% генома. Близкие виды, например мышь и крыса, имеют совершенно различ­ные высокочастотные последовательности, у крысы их нуклеотидный состав не отличается от основной ДНК, тогда как геном мыши содержит четкий АТ-богатый сател­лит. Это означает, что высокочастотная ДНК способна к быстрым изменениям в ходе видообразования.



Остальные 90 % генома эукариот, его эухроматическая часть, построены по принципу чередования (интерсперсии) уникальных и повторяющихся последовательностей. Условно выделяют два основных типа интерсперсии, полу­чивших названия по тем видам, у которых они впервые были описаны: интерсперсия типа «ксенопус» (обнару­жена у шпорцевой лягушки Xenopus laevis) и типа «дрозофила» (впервые описана у плодовой мушки D. melanogaster) . Примерно в 50 % генома Xenopus laevis уникальные последовательности из 800…1200 п.н. чередуются с повторяющимися, средний размер которых 300 п.н. В остальной части геномов типа «ксенопус» расстояния между соседними повторами значительно превышают 1…2 п.н. Структура генома типа «ксенопус» широко распространена, особенно среди жи­вотных. Млекопитающие и человек также относятся к этому типу организации генома. Особенность генома человека и других приматов составляют интерсперсные высокоча­стотные повторы длиной около 300 п.н. У человека эти повторы содержат сайт, разрезаемый ферментом рестрик­ции Alu I. Число Alu-подобных повторов в геноме человека достигает 5×10 5 , а по некоторым данным, даже 10 6 .



Alu-подобные последовательности приматов представ­ляют собой частичные дупликации (удвоения) последо­вательности В1 в геноме грызунов, впервые описанной Г. П. Георгиевым и его сотрудниками.

У D. melanogaster параметры интерсперсии резко от­личаются от видов с типом генома «ксенопус»: повторяю­щиеся последовательности длиной 5600 п.н. чередуются с уникальными, длина которых не менее 13000 п.н.

Интересно отметить, что у домашней мухи геном устроен по типу «ксенопус». Этот факт прямо указывает на то, что в ходе эволюции возможны очень быстрые преобразования характера чередования последовательностей и в эухроматической части генома. Птицы по параметрам интерс­персии занимают промежуточное положение между типом «ксенопус» и типом «дрозофила». Как показывают резуль­таты исследований последних лет, многие виды животных и растений по организации генома не могут быть строго отнесены ни к тому, ни к другому типу. Так, в геномах мле­копитающих встречаются длинные повторы – в несколько тысяч пар нуклеотидов, в геномах лилейных до 90% ДНК может быть представлено повторяющимися последова­тельностями. Например, геном гороха не содержит уни­кальных последовательностей, превышающих по длине 300 п.н.

Другая особенность повторяющихся последовательно­стей в геномах эукариот – инвертированные повторы, или палиндромы (см. ниже). В условиях ренатурации они практически мгновенно формируют дуплексные структуры. По существу, палиндромы представляют собой часть про­межуточных повторов. Однако некоторые высокочастот­ные повторы в эухроматической части генома, например члены Alu-семейств, могут встречаться как в прямом, так и в инвертированном положении. Иногда между инвер­тированными повторами вклиниваются другие последо­вательности.

Хроматин – основной компонент клеточного ядра – достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

Таблица 3. Химический состав хроматина. Содержание белков и РНК дано по отношению к ДНК

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны , составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина – нуклеогистон . Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК: гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Таблица 4 . Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.

Репликация эукариотических ДНК

Бактериальная хромосома реплицируется как одна структурная единица, имеющая одну стартовую точку репликации и одну точку терминации. Таким образом бактериальная циклическая ДНК является одним репликоном . От стартовой точки репликация идет в двух противоположных направлениях, так что по мере синтеза ДНК образуется так называемый глазок репликации, ограниченный с двух сторон репликационными вилками, что хорошо видн при электронномикроскопическом изучении вирусных и бактериальных реплицирующихся хромосом.

У эукариотических клеток организация репликации иного характера – полирепликоннная.. Как уже говорилось, при импульсном включении 3 НТ множественная метка появляется практически во всехмитотических хромосомах. Это означает, что одновременно в интерфазной хромосоме существует множество мест репликации и множество автономных точек начала репликации. Более подробно это явление было изучено с помощью радиоавтографии меченых молекул, выделенных ДНК (рис. 55).Если клетки были импульсно мечены 3 НТ, то в световом микроскопе на автографах выделенных ДНК можно видеть участки восстановленного серебра в виде пунктирных линий. Это небольшие отрезки ДНК, которые успели реплицироваться, а между ними расположены участки нереплицированной ДНК, которая не оставила радиоавтографа и поэтому остается невидимой. По мере увеличения времени контакта 3 НТ с клеткой величина таких отрезков возрастает, а расстояние между ними уменьшается. Из этих экспериментв можно точно рассчитать скорость репликации ДНК у эукариотических организмов. Скорость движения репликационной вилки оказалась равной 1-3 т.п.н. в мин у млекопитающих, около 1 т.п.н. в мин у некоторых растений, что намного ниже скорости репликации ДНК у бактерий (50 т.п.н. в мин.). В этих же экспериментах была прямо доказана полирепликонная структура ДНК хромосом эукариот: по длине хромосомной ДНК, вдоль нее, располагается множество независимых участков репликации – репликонов. По расстоянию между средними точками смежных метящихся репликонов, т.е. по расстоянию между двумя соседними стартовыми точками репликации, можно узнать величину отдельных репликонов. В среднем величина репликонову высших животных составляет около 30 мкм или 100 т.п.н. Следовательно, в гаплоидном наборе млекопитающих должно быть 20 000-30 000 репликонов. У низших эукариот величина репликонов меньше, около 40 т.п.н. Так у дрозофилы на геном приходится 3500 репликонов, а у дрожжей – 400. Как говорилось, синтез ДНК в репликоне идет в двух противоположных направлениях. Это легко доказывается радиоавтографически: если клеткам после импульсной метки дать продолжить синтезировать ДНК некоторое время в среде без 3 НТ, то произойдет падение включения его в ДНК, будет происходить как бы разбавление метки, и на радиоавтографе можно будет видеть симметричное, с двух сторон реплицируемого участка, уменьшение количества зерен восстановленного серебра.

Реплицирующиеся концы или вилки в репликоне прекращают движение, когда встретятся с вилками соседних репликонов (в терминальной точке, общей для соседних репликонов). В этом месте реплицированные участки соседних репликонов объединяются в единые ковалентные цепи двух новосинтезированных молекул ДНК. Функциональное подразделение ДНК хромосом на репликоны совпадает со структурным подразделением ДНК на домены или петли, основания которых, как уже упоминалось, скреплены белковыми связками.

Таким образом весь синтез ДНК на отдельной хромосоме протекает за счет независимого синтеза на множестве отдельных репликонов, с последующим соединением концов соседних отрезков ДНК. Биологический смысл этого свойства становится ясным при сравнении синтеза ДНК у бактерий и эукариот. Так бактериальная монорепликонная хромосома длиной в 1600 мкм синтезируется со скоростью около получаса. Если бы сантиметровая молекула ДНК хромосомы млекопитающих реплицировалась тоже как монорепликонная структура, то на это ушло бы около недели (6 суток). Но если в такой хромосоме расположено несколько сот репликонов, то для полной ее репликации понадобится всего около часа. На самом же деле время репликации ДНК у млекопитающих составляет 6-8 часов. Это связано с тем, что не все репликоны отдельной хромосомы включаются одновременно.

В некоторых случаях наблюдается одновременное включение всех репликонов или же появление дополнительных точек начала репликации, что дает возможность закончить синтез всех хромосом за минимально короткое время. Это явление происходит на ранних этапах эмбриогенеза некоторых животных. Так известно, что при дроблении яиц шпорцевых лягушек Xenopus laevis синтез ДНК занимает всего 20 минут, тогда как в культуре соматических клеток этот процесс продолжается около суток. Аналогичная картина наблюдается у дрозофилы: на ранних эмбриональных стадиях весь синтез ДНК в ядре занимает 3,5 минуты, а в клетках культуры ткани – 600 минут. При этом в клетках культуры величина репликонов оказалась почти в 5 раз больше, чем у эмбрионов.

Синтез ДНК по длине отдельной хромосомы происходит неравномерно. Было обнаружено, что в индивидуальной хромосоме активные репликоны собраны в группы, репликативные единицы, которые включают в себя 20-80 точек начала репликации. Это следовало из анализа радиоавтографов ДНК, где наблюдалась именно такая сблоченность реплицирующихся отрезков. Другим основанием для представления о существовании блоков или кластеров репликонов или репликационных единиц были эксперименты с включением в ДНК аналога тимидина - 5’-бромдезоксиуридина (BrdU). Включение BrdU в интерфазный хроматин приводит к тому, что во время митоза, участки с BrdU конденсируются в меньшей степени (недостаточная конденсация), чем те участки, где включался тимидин. Поэтому те участки митотических хромосом в которые включился BrdU, будут слабо окрашиваться при дифференциальной окраске. Это позволяет на синхронизированных культурах клеток выяснить последовательность включения BrdU, т.е. последовательность синтеза ДНК по длине одной взятой хромосомы. Оказалось, что происходит включение предшественника в большие участки хромосомы. Включение разных участков происходит строго последовательно в течение S-периода. Каждая хромосома характеризуется высокой стабильностью порядка репликации по своей длине, имеет свой специфический рисунок репликации.

Кластеры репликонов, объединенные в репликационные единицы, связаны с белками ядерного матрикса (см. ниже), которые вместе с ферментами репликации образуют т.н. кластеросомы – зоны в интерфазном ядре, в которых идет синтез ДНК.

Порядок, в котором активируются репликационные единицы, может, вероятно, определяться структурой хроматина в этих участках. Так, например, зоны конститутивного гетерохроматина (вблизи центромеры) реплицируются обычно в конце S-периода, также в конце S-периода удваивается часть факультативного гетерохроматина (например, X-хромосома самок млекопитающих). Особенно четко во времени последовательность репликации участков хромосом коррелирует с рисунком дифференциальной окраски хромосом: R-сегменты относятся к ранореплицирующимся, G-сегменты соответствуют участкам хромосом с поздней репликацией. C-сегменты (центромера) – места самой поздней репликации.

Так как в разных хромосомах величина и число разных групп дифференциально окрашенных сегментов различно, то это создает картину асинхронного начала и завершения репликации разных хромосом в целом. Во всяком случае, последовательность начала и окончания репликации отдельных хромосом в наборе не беспорядочная. Существует строгая последовательность репродукции хромосом относительно других хромосом в наборе.

Длительность процесса репликации отдельных хромосом прямо не зависит от их размеров. Так крупные хромосомы человека группы А (1-3) оказываются мечеными в течение всего S-периода, так же как и более короткие хромосомы группы В (4-5).

Таким образом, синтез ДНК в геноме эукариот начинается почти одновременно на всех хромосомах ядра в начале S-периода. Но при этом происходит последовательное и асинхронное включение разных репликонов как в разных участках хромосом, так и в разных хромосомах. Последовательность репликации того или иного участка генома строго детерминирована генетически. Это последнее утверждение доказывается не только картиной включения метки в разные отрезки S-периода, но также тем, что существует строгая последовательность появления в ходе S-периода пиков чувствительности определенных генов к мутагенам.

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).



Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.


Таблица 4. Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.

Хроматином называют сложную смесь веществ, из которых построены хромосомы эукариот. Основными компонентами хроматина являются ДНК, гистоны и негистоновые белки, образующие высокоупорядоченные в пространстве структуры. Соотношение ДНК и белка в хроматине составляет ~1:1, а основная масса белка хроматина представлена гистонами. Гистоны образуют семейство высококонсервативных основных белков, которые разделяются на пять больших классов, названных H1, H2A, H2B, H3 и H4 . Размер полипептидных цепей гистонов лежит в пределах ~220 (H1) и 102 (H4) аминокислотных остатков. Гистон H1 сильно обогащен остатками Lys , для гистонов H2A и H2B характерно умеренное содержание Lys, полипептидные цепи гистонов H3 и H4 богаты Arg . Внутри каждого класса гистонов (за исключением H4) на основании аминокислотных последовательностей различают несколько субтипов этих белков. Такая множественность особенно характерна для гистонов класса H1 млекопитающих. В этом случае различают семь субтипов, названных H1.1–H1.5, H1 o и H1t.

Рис. I.2. Схематическое изображение петельно-доменного уровня компактизации хроматина

а – фиксация петли хромомера на ядерном матриксе с помощью MAR/SAR-последовательностей и белков;б – "розетки", образованные из петли хромомера;в – конденсация петель "розеток" с участием нуклеосом и нуклеомеров

Важным результатом взаимодействия ДНК с белками в составе хроматина является ее компактизация. Суммарная длина ДНК, заключенной в ядре клеток человека, приближается к 1 м, тогда как средний диаметр ядра составляет 10 мкм. Длина молекулы ДНК, заключенной в одной хромосоме человека, в среднем равняется ~4 см. В то же время длина метафазной хромосомы составляет ~4 мкм. Следовательно, ДНК метафазных хромосом человека компактизована по длине, по крайней мере, в 10 4 раз. Степень компактизации ДНК в интерфазных ядрах значительно ниже и неравномерна в отдельных генетических локусах. С функциональной точки зрения различают эухроматин и гетерохроматин . Эухроматин характеризуется меньшей по сравнению с гетерохроматином компактизацией ДНК, и в нем главным образом локализуются активно экспрессирующиеся гены. В настоящее время широко распространено мнение о генетической инертности гетерохроматина. Поскольку его истинные функции сегодня нельзя считать установленными, эта точка зрения по мере накопления знаний о гетерохроматине может измениться. Уже сейчас в нем находят активно экспрессирующиеся гены.

Гетерохроматизация определенных участков хромосом часто сопровождается подавлением транскрипции имеющихся в них генов. В процесс гетерохроматизации могут быть вовлечены протяженные участки хромосом и даже целые хромосомы. В соответствии с этим считается, что регуляция транскрипции генов эукариот в основном происходит на двух уровнях. На первом из них компактизация или декомпактизация ДНК в хроматине может приводить к длительной инактивации или активации протяженных участков хромосом или даже целых хромосом в онтогенезе организма. Более тонкая регуляция транскрипции активированных участков хромосом достигается на втором уровне при участии негистоновых белков, включающих многочисленные факторы транскрипции.

Структурная организация хроматина и хромосом эукариот. Вопрос о структурной организации хроматина в интерфазных ядрах в настоящее время далек от своего разрешения. Это связано, прежде всего, со сложностью и динамичностью его структуры, которая легко меняется даже при незначительных экзогенных воздействиях. Большинство знаний о структуре хроматина было получено in vitro на препаратах фрагментированного хроматина, структура которого значительно отличается от таковой в нативных ядрах. В соответствии с распространенной точкой зрения различают три уровня структурной организации хроматина у эукариот: 1) нуклеосомная фибрилла ; 2) соленоид , или нуклеомер ; 3) петельно-доменная структура , включающая хромомеры .

Нуклеосомные фибриллы. В определенных условиях (при низкой ионной силе и в присутствии двухвалентных ионов металлов) в изолированном хроматине удается наблюдать регулярные структуры в виде протяженных фибрилл диаметром 10 нм, состоящих из нуклеосом. Эти фибриллярные структуры, в которых нуклеосомы расположены как бусы на нитке, рассматриваются в качестве низшего уровня упаковки ДНК эукариот в хроматине. Нуклеосомы, входящие в состав фибрилл, расположены более или менее равномерно вдоль молекулы ДНК на расстоянии 10–20 нм друг от друга. В состав нуклеосом входят четыре пары молекул гистонов: H2a, H2b, H3 и H4, а также одна молекула гистона H1. Данные по структуре нуклеосом в основном получены с использованием трех методов: рентгеноструктурного анализа низкого и высокого разрешения кристаллов нуклеосом, межмолекулярных сшивок белок–ДНК и расщепления ДНК в составе нуклеосом с помощью нуклеаз или радикалов гидроксила. На основании таких данных А. Клугом была построена модель нуклеосомы, в соответствии с которой ДНК (146 п.о.) в B-форме (правозакрученная спираль с шагом 10 п.о.) намотана на гистоновый октамер, в центральной части которого расположены гистоны Н3 и Н4, а на периферии – Н2а и Н2b. Диаметр такого нуклеосомного диска составляет 11 нм, а его толщина – 5,5 нм. Структура, состоящая из гистонового октамера и намотанной на него ДНК, получила название нуклеосомной к ó ровой частицы. Кó ровые частицы отделены друг от друга сегментами линкерной ДНК . Общая длина участка ДНК, включенного в нуклеосому животных, составляет 200 (15) п.о.

Полипептидные цепи гистонов содержат структурные домены нескольких типов. Центральный глобулярный домен и гибкие выступающие N- и С-концевые участки, обогащенные основными аминокислотами, получили название плеч (arm). С-концевые домены полипептидных цепей, участвующие в гистон–гистоновых взаимодействиях внутри кó ровой частицы, находятся преимущественно в виде -спирали с протяженным центральным спиральным участком, вдоль которого с двух сторон уложено по одной более короткой спирали. Все известные места обратимых посттрансляционных модификаций гистонов, происходящих на протяжении клеточного цикла или во время дифференцировки клеток, локализованы в гибких основных доменах их полипептидных цепей (табл. I.2). При этом N-концевые плечи гистонов H3 и H4 являются самыми консервативными участками молекул, а гистоны в целом – одними из наиболее эволюционно консервативных белков. С помощью генетических исследований дрожжей S. cerevisiae было установлено, что небольшие делеции и точковые мутации в N-концевых частях генов гистонов сопровождаются глубокими и разнообразными изменениями фенотипа дрожжевых клеток. Это указывает на чрезвычайную важность целостности молекул гистонов в обеспечении правильного функционирования эукариотических генов.

В растворе гистоны Н3 и Н4 могут существовать в виде стабильных тетрамеров (Н3) 2 (Н4) 2 , а гистоны Н2А и Н2В – в виде стабильных димеров. Постепенное повышение ионной силы в растворах, содержащих нативный хроматин, приводит к освобождению сначала димеров Н2А/Н2В, а затем тетрамеров Н3/Н4.

Дальнейшее уточнение тонкой структуры нуклеосом в кристаллах было проведено недавно в работе К. Люгера с соавт. (1997 г.) с помощью рентгеноструктурного анализа высокого разрешения. Было установлено, что выпуклая поверхность каждого гистонового гетеродимера в составе октамера огибается сегментами ДНК длиной 27–28 п.о., расположенными по отношению друг к другу под углом 140 о, которые разделены линкерными участками длиной в 4 п.о.

В соответствии с современными данными пространственная структура ДНК в составе кó ровых частиц несколько отличается от B-формы: двойная спираль ДНК перекручена на 0,25–0,35 п.о./виток двойной спирали, что приводит к образованию шага спирали, равному 10,2 п.о./виток (у В-формы в растворе – 10,5 п.о./виток). Стабильность комплекса гистонов в составе кó ровой частицы определяется взаимодействием их глобулярных частей, поэтому удаление гибких плеч в условиях мягкого протеолиза не сопровождается разрушением комплекса. N-концевые плечи гистонов, по-видимому, обеспечивают их взаимодействие со специфическими участками ДНК. Так, N-концевые домены гистона Н3 контактируют с участками ДНК на входе в кó ровую частицу и выходе из нее, тогда как соответствующий домен гистона Н4 связывается с внутренней частью ДНК нуклеосомы.

Упомянутые выше исследования структуры нуклеосом высокого разрешения показывают, что центральная часть сегмента ДНК длиной в 121 п.о. в составе нуклеосомы образует дополнительные контакты с гистоном H3. При этом N-концевые части полипептидных цепей гистонов H3 и H2B проходят через каналы, образуемые малыми бороздками соседних супервитков ДНК нуклеосомы, а N-концевая часть гистона H2A контактирует с малой бороздкой внешней части супервитка ДНК. В совокупности данные высокого разрешения показывают, что ДНК в составе коровых частиц нуклеосом огибает гистоновые октамеры неравномерно. Кривизна нарушается в местах взаимодействия ДНК с поверхностью гистонов, и такие изломы наиболее заметны на расстоянии 10–15 и 40 п.о. от центра супервитка ДНК.

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу. ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов:часто повторяющиеся последовательности (>106 раз), входящие во фракцию сателитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (102-105), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Хроматин

В состав хроматина входит ДНК в комплексе с белком. В интерфазных клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Часто он особенно четко выявляется на периферии ядра (пристеночный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0.3 мкм) и длинных тяжей, образующих подобие внутриядерной цепи.

В интерфазе в зоне ядрышкового организатора образуется ядрышко. Эухроматин -- это деконденсированные, деспирализованные участки ДНК, с которых считывается генетическая информация об аминокислотном составе белка (транскрипция). Эухроматин -- функционально активная часть хромосомы.

Гетерохроматин -- это конденсированные, спирализованные участки ДНК. Гетерохроматин -- функционально неактивные части хромосомы. Гетерохроматин интенсивно окрашивается основными красителями, тогда как эухроматин не обладает этим свойством и выглядит в виде светлых, неокрашенных участков среди глыбок гетерохроматина.

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсирован, тогда эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматин). Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец - хромосом.

в рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации;

в неактивном - в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и перенося генетического материала в дочерние клетки.

В химическом отношении препараты хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входит ДНК и специальные хромосомные белки - гистоны.

Белки хроматина

К ним относятся гистоны и негистоновые белки.

Гистоны - сильноосновные белки. Их щелочность связана с их обогащенностью основными аминокислотами (главным образом лизином и аргинином). Эти белки не содержат триптофана. Препарат суммарных гистонов можно разделить на 5 фракций:

Н1 (от английского histone) - богатый лизином гистон,

Н2а - умеренно богатый лизином гистон, Н2б - умеренно богатый лизином гистон,

Н4 - богатый аргинином гистон, Н3 - богатый аргинином гистон,

Гистоны синтезируются на полисомах в цитоплазме, этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

Негистоновые белки - наиболее плохо охарактеризованная фракция хроматина.

Ямдрышки

Участки хромосом, на которых происходит синтез рибосомных рибонуклеиновых кислот (рРНК). Находятся внутри ядра клетки, и не имеют собственной мембранной оболочки, однако хорошо различимы под световым и электронным микроскопом].

Основной функцией ядрышка является синтез рибосомных РНК и рибосом, на которых в цитоплазме осуществляется синтез полипептидных цепей. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, её созревание, сборка рибосомных субъединиц. В ядрышке локализуются белким, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность -- сигнал ядрышковой локализации. Электронная микроскопия позволяет выделить в ядрышке два основных компонента: гранулярный (по периферии) -- созревающие субъединицы рибосом и фибриллярный (в центре) -- рибонуклеопротеидные тяжи предшественников рибосом.

Гранулярный компонент представлен зернами (диаметр 10--20 нм), состоящими из рибонуклеопротеидных частиц (субъединицы рибосом). Фибриллярная часть состоит из плотных тонких электронноплотных нитей (диаметр 5--8 нм), образующих компактную массу. Эти волокна концентрируются вокруг более светлых сердцевин из менее плотного материала (фибриллярные центры). Считается, что фибриллярный материал представляет собой РНК (рибосомальная РНК), а фибриллярные центры состоят из ДНК и по строению соответствуют зернам хроматина.

Аморфный компонент окрашивается бледно и содержит участки расположения ядрышковых организаторов со специфическими РНК-связывающими белками и крупными петлями ДНК, активно участвующими в транскрипции рибосомальной РНК-Фибриллярный и гранулярный компоненты образуют ядрышковую нить (нуклеонему), толщина которой 60--80 нм.

Основной функцией ядрышка является синтез рибосом. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах.