Бактерия – клетка без ядра. Безъядерные клетки человека Безъядерные клетки человека и животных

Джонн Бриггс (John Briggs) и Дарко Димитровски (Darko Dimitrovski) из университета Фрайбурга (Universität Freiburg) обосновали и рассчитали придуманный ими метод создания атомов без ядра. С развивающимися ныне технологиями такой «фокус» будет доступен экспериментаторам во вполне обозримом будущем.

Атом без ядра — это набор электронных оболочек, сохраняющих свою «форму» так, словно бы они всё ещё удерживаются ядром.

Создать такое странное образование возможно, если воздействовать на какой-либо атом чрезвычайно коротким и при этом очень мощным импульсом лазера, говорят учёные.

Правда, этот экзотический атом без ядра будет жить ничтожно короткое мгновение, но всё же — он будет реально существовать.

Бриггс и Димитровски посчитали, как будет работать их метод. Итак: лазер с импульсом длительностью примерно 10 аттосекунд (1 аттосекунда равна 10 -18 с), вроде того что был использован в этом необычном опыте, но только чрезвычайно мощный (а именно — 10 18 ватт), воздействует на атом. Период орбитального движения электронов в атоме заметно больше, чем длительность такого импульса. Так, к примеру, у водорода электрон «обегает» вокруг ядра за 24 аттосекунды.

Если сила электрического поля в луче будет больше, чем сила связи электронов с ядром, – вся электронная оболочка будет оторвана от ядра и аккуратно смещена в сторону.

Ключ к успеху тут — быстротечность импульса и правильная его частота, ведь «сбивание» электронных оболочек (всех их уровней сразу, если речь идёт об атоме, куда более сложном, нежели водород) должно произойти за счёт действия всего лишь одного полупериода электромагнитной волны использованного в опыте излучения.

Второй полупериод этой волны послужит для торможения полного волнового пакета в новом месте его расположения — на некотором расстоянии от ядра. Тут имеется в виду волновой пакет всех электронов атома, разумеется.

Поскольку импульс лазера столь короток, за время своего смещения в пространстве электроны, образно говоря, не успеют ничего «предпринять». Их волновая функция почти не претерпит искажений, да и разбежаться в стороны от действия сил Кулона электроны не успеют, поясняют изобретатели метода.

Разумеется, такой «атом» через очень краткий миг распадётся, но если зафиксировать приборами все разлетевшиеся электроны, можно будет потом в компьютере восстановить облик первоначального волнового пакета, то есть того самого атома без ядра — самостоятельно существующего электронного облака, воспроизводящего форму оболочек исходного атома.

Удивительно, но, по расчётам Джона и Дарко, «снять» с минимальным «повреждением» разом все электронные оболочки можно не только с лёгких, но и с тяжёлых атомов, и более того — подобный «трюк» можно проделать даже с молекулами. Понятно, чтобы осуществить такой опыт, нужно ещё создать очень мощный аттосекундный лазер.

И, надо сказать, техника постепенно подступается к этой задаче. Ведь уже существующие установки демонстрируют потрясающие вещи. Например, познакомьтесь с лазерами: выдавшим недавно самый яркий свет во Вселенной, обошедшим некоторые капризы квантовой физики, мощным рентгеновским , который взорвал объект наблюдения; а также с историями о том, как сверхкороткие лазерные импульсы позволили отснять молекулы , создать чёрный металл и поставить рекорд скорости нагрева в 10 18 градусов в секунду, а ещё — аккуратно

Если вы занимаетесь администрированием и поддержанием очень важных систем в корпоративном секторе, то знаете, что найти свободное окно для установки обновлений безопасности для операционной системы может быть очень непросто.

Если компания не работает в области компьютерной безопасности, то решение может быть принято в сторону бесперебойной работы, а не устранения уязвимостей, а внутренняя бюрократия может привести к задержкам при выборе времени простоя. Иногда возникают ситуации, когда вы не можете позволить себе ни минуты простоя сервера и должны минимизировать опасность уязвимостей другими способами.

Но теперь ситуация изменилась в лучшую сторону. Несколько дней назад Canonical выпустила службу Livepatch, с помощью которой вы можете применять критические патчи ядра для Ubuntu 16.04 64 бит начиная от версии ядра 4.4 без необходимости перезагрузки. На самом деле это не полное обновление ядра ubuntu 16.04, а обновление его некоторых частей, которые содержат ошибки.

Все правильно, теперь обновление ядра без перезагрузки возможно и в Ubuntu. И в этой статье мы рассмотрим как это использовать в своей системе.

Как я уже сказал, служба Canonical LivePatch поддерживается начиная с Ubuntu 16.04. Но чтобы избежать ошибок сначала желательно обновить систему до самой последней версии. Для этого выполните:

sudo apt update
$ sudo apt upgrade

Если у вас еще не установлены инструменты для работы со snap, их нужно установить:

sudo apt install snapd

Подписка на Livepatch

Для того чтобы использовать службу Canonical Livepatch вам необходимо авторизоваться на https://auth.livepatch.canonical.com/ с помощью аккаунта Ubuntu One и указать являетесь ли вы обычным пользователем Ubuntu или абонентом.

Обычные пользователи Ubuntu могут подключить до трех машин с помощью Livepatch, для этого после входа вам будет выдан токен. Чтобы его получить нажмите Get your token :

Далее, вам нужно будет ввести данные учетной записи Ubuntu One или создать новую учетную запись. В последнем варианте нужно будет подтвердить адрес электронной почты. В следующем окне вы получите свой токен:

Этот токен нам понадобится позже, а теперь рассмотрим как установить необходимые пакеты.

Обновление ядра без перезагрузки Ubuntu

Сначала установите snap пакет этой службы, для этого выполните команду:

sudo snap install canonical-livepatch

Затем необходимо зарегистрировать свой компьютер с помощью полученного ранее токена. Используйте такую команду:

sudo canonical-livepatch enable ваш_токен

canonical-livepatch status

kernel: 4.4.0-43.63-generic
fully-patched: true
version: ""

Также вы можете получить более подробную информацию с помощью опции --verbose:

canonical-livepatch status --verbose

Доступные патчи будут применяться сервисом canonical-livepatch автоматически, как только они появятся. Это значит, что ваша система всегда будет в безопасности.

Выводы

Компания Red Hat выпустила подобный сервис для своего дистрибутива еще несколько лет назад, OpenSUSE тоже представила что-то подобное в то же самое время. Наконец появилось обновление ядра без перезагрузки в Ubuntu и это не может не радовать. Canonical работает над улучшением своей системы, жаль только что немного отстает от конкурентов.

Похожие записи:


Уникальность зарождения органической жизни на Земле состоит в том, что в результате сложных реакций, которые природа неоднократно воспроизводила с неорганическими соединениями, возникла структура, способная сама себя повторять. Говоря современным языком – наследовать. Путь, пройденный протонами, электронами и ионами при построении сложных макромолекул сегодня пытаются воссоздать в научных лабораториях. Первыми помощниками ученых в этих опытах являются бактерии. В основе сотрудничества человека и простейших лежит то обстоятельство, что в клетках бактерий нет оформленного ядра с наследственной информацией. Их реплицирующий механизм прост и, судя по всему, является достоверной моделью первых удачных попыток природы передавать наследственные данные от одного организма другому.

Нуклеоид – замена ядру в клетке бактерии

Если упрощенно описать живую клетку, то самая простая схема будет выглядеть следующим образом: отделенное мембраной от внешнего мира пространство, наполненное внутриклеточным веществом, в котором протекают биохимические процессы, способные организовать самостоятельное размножение биоструктуры. Эта миссия является определяющей для существования органической жизни.

Передача наследственной информации может осуществляться двумя разными путями, в зависимости от устройства внутриклеточного хранилища, в котором эта информация содержится:

  1. У эукариотов роль такого хранилища играет оформленное ядро, которое состоит из мембраны, изолирующей ДНК от остального пространства клетки, и самой макромолекулы дезоксирибонуклеиновой кислоты, упакованной в хромосому. Ядро считается органеллой эукариотической клеточной структуры.
  2. В прокариотических (бактериальных) клеточных конструкциях ДНК никак не отделена от остального внутриклеточного вещества, а только компактно упаковано в нуклеоид – кольцевую хромосому с генетической информацией, выполняющую роль ядра.

Есть гипотеза, согласно которой предок оформленного эукариотического ядра – бактерия-симбионт. На заре зарождения ядерных организмов эта бактерия-симбионт стала частью прототипа эукариотической клеточной конструкции и сумела наладить эффективное сотрудничество по передаче наследственной информации.

Бактерия снабжала эукариотическую клетку при делении наследственной информацией, а в качестве вознаграждения за труд получала те питательные вещества, которые синтезировались большим эукариотом, а со временем стала ядром.

Так это было на самом деле или нет, ученым еще предстоит разобраться, а на сегодня они имеют почти полное представление о нуклеоиде бактерии и о тех функциях, которые он выполняет в бактериальной клетке.

Форма нуклеоида и его положение

Одна из основных характеристик нуклеоида – хранителя ДНК бактерии – его кольцевое строение. Однако уже сегодня, по результатам современных исследований, бактериологи различают разные формы устройства нуклеоид. Он может выглядеть как:

  • бобовидное тело;
  • клубок спутанных толстых веревок;
  • кораллоподобная структура с ветвями, ширящимися по всему пространству микроорганизма.

Форма нуклеоида зависит от того, какие белки упаковывали макромолекулу ДНК в хромосому.

В связи с тем, что ядро в бактерии отсутствует, в процессе эволюции был создан способ крепления нуклеоида к цитоплазматической мембране. Это крепление обеспечивает быструю и надежную репликацию хромосом.

Кроме того, согласно данным последних научных исследований, ДНК в нуклеоиде бактерии не является единичной макромолекулой. В некоторых случаях нуклеоид бактерий содержит от 9 до 18 кольцевых ДНК.

Также есть данные, полученные лабораторным путем, что далеко не все ДНК, которые содержатся в прокариотах, имеют кольцевую структуру. Так, например, ДНК спирохеты бореллия (Borrelia burgdorferi), возбудителя клещевого спирохетоза, имеет линейное строение.

Все основные параметры нуклеоида, который содержит наследственную информацию бактерии, активно изучаются, и сегодня этот клеточный органоид характеризуется как:

  • кольцевая структура (имеются исключения в виде линейных макромолекул);
  • одиночная хромосома (имеются исключения).

Способы репликации

Репликация молекулы дезоксирибонуклеиновой кислоты напрямую связана со способом упаковки и хранения наследственной информации.

Репликация – воспроизводство дочерней ДНК по матрице родительской макромолекулы ДНК. Выделяют три основных вида:

  • консервативный (без раскручивания спирали);
  • полуконсервативный (родительская спираль раскручивается, и обе части являются матрицами для синтеза дочерних макромолекул);
  • дисперсивный (родительская ДНК распадается на множество фрагментов, которые и берутся за основу для синтеза дочерних макромолекул).

В бактериальной клетке репликация идет по полуконсервативному пути. Раскручивание родительской молекулы происходит в результате воздействия ферментов, а по завершении процесса репликации и оформления двух нуклеоидов в теле бактериальной клетки, процесс деления входит в свою самую активную фазу.

Митохондрии

Обеспечение живой клетки энергией – ответственная миссия. Если она будет провалена, никакой речи о делении и наследстве идти не будет.

В бактерии, в которой отсутствуют специальные органеллы (митохондрии) для синтеза АТФ, энергия производится непосредственно в цитоплазме и потребляется всеми клеточными структурами.

У эукариотов совершенно другая картина. Большие клеточные конструкции не могут себе позволить пустить на самотек процесс обеспечения всех своих составляющих энергией. Именно для этих целей служит своеобразная энергетическая станция – митохондрия.

Строение митохондрии и ее роль в большой клетке с ядром – еще одно подтверждение в пользу эволюционного симбиоза бактерий, которые общими усилиями создали эукариотическую клетку.

Митохондрия также содержит ДНК с наследственной информацией, и так же, как в бактерии, эта ДНК не упакована в оформленное ядро, а покоится внутри митохондрии, в качестве двуспиральной кольцевой макромолекулы.

Независимо от того, какая деятельность по передаче наследственной информации происходит в ядре эукариота, митохондрия самостоятельно осуществляет процесс репликации собственной ДНК.

Выработка АТФ митохондрией происходит по тому же пути, что и у бактерий:

  • при окислительно-восстановительных реакциях;
  • в результате работы мембранного (речь идет о мембране митохондрии) АТФ-синтетазного комплекса.

Именно эти процессы являются основными при снабжении бактерии энергией, и митохондрия эукариота их дублирует.

Биология изучает все живое на планете Земля, начиная с глобальной экосистемы Земли - биосферы - и заканчивая самыми мельчайшими живыми частицами - клетками. Раздел биологии о клетках называется "цитология". Она изучает все живые клетки, которые бывают ядерными и безъядерными.

Значение ядра для клетки

Как видно из названия, безъядерные клетки не имеют ядра. Они характерны для прокариотов, которые сами по себе являются такими клетками. Сторонники теории эволюции считают, что эукариотические клетки произошли от прокариотических. Основным отличием эукариотов в процессе развития жизни стало именно клеточное ядро. Дело в том, что в ядрах содержится вся наследственная информация - ДНК. Потому для эукариотических клеток отсутствие ядра обычно отклонение от нормы. Однако бывают исключения.

Прокариотические организмы

Безъядерными клетками являются прокариотические организмы. Прокариоты - древнейшие существа, состоящие из одной клетки или колонии клеток, к ним относятся бактерии и археи. Их клетки называют доядерными.

Главной особенностью биологии клеток прокариотов является, как уже было упомянуто, отсутствие ядра. По этой причине их наследственная информация хранится оригинальным способом - вместо эукариотических хромосом ДНК прокариота «упакована» в нуклеоид - кольцевую область в цитоплазме. Наряду с отсутствием оформленного ядра нет мембранных органоидов - митохондрий, аппарата Гольджи, пластид, эндоплазматической сети. Вместо них необходимые функции выполняются мезосомами. Рибосомы прокариотов гораздо меньше эукариотических по размеру, а их количество меньше.

Безъядерные клетки растений

У растений есть ткани, состоящие из одних безъядерных клеток. Например, луб или флоэма. Он находится под покровной тканью и представляет собой систему из разных тканей: основной, опорной и проводящей. Основным элементом луба, относящимся к проводящей ткани, являются ситовидные трубки. Состоят они из члеников - удлинённых безъядерных клеток с тонкими клеточными стенками, главным компонентом которых являются целлюлоза и пектиновые вещества. Ядро они теряют при созревании - оно отмирает, а цитоплазма превращается в тонкий слой, размещённый у стенки клетки. Жизнь этих безъядерных клеток связана с клетками-спутниками, имеющими ядро; они тесно связаны друг с другом и фактически составляют одно целое. Членики и спутники развиваются в общей меристематической клетке.

Клетки ситовидных трубок живые, но это единственное исключение; все остальные клетки без ядра у растений являются мертвыми. У эукариотических организмов (к которым относятся и растения) безъядерные клетки способны жить очень короткое время. Клетки ситовидных трубок недолговечны, после смерти образуют поверхностный слой растения - покровную ткань (например, кору дерева).

Безъядерные клетки человека и животных

В организме человека и млекопитающих животных также есть клетки без ядра - эритроциты и тромбоциты. Рассмотрим их подробнее.

Эритроциты

Иначе их называют красными кровяными тельцами. На этапе формирования молодые эритроциты содержат ядро, а вот взрослые клетки его не имеют.

Эритроциты обеспечивают насыщение кислородом органов и тканей. С помощью содержащегося в красных кровяных клетках пигмента гемоглобина клетки связывают молекулы кислорода и переносят их от лёгких в мозг и к другим жизненно важным органам. Также они участвуют в выводе из организма продукта газообмена - углекислого газа СО 2 , транспортируя его.

Эритроциты человека имеют размер всего 7-10 мкм и форму двояковогнутого диска. Благодаря маленьким размерам и эластичности, красные кровяные тельца легко проходят через капилляры, которые значительно меньше них по размеру. В результате отсутствия ядра и других клеточных органелл количество гемоглобина в клетке повышено, гемоглобин заполняет весь её внутренний объём.

Выработка эритроцитов проходит в костном мозге ребёр, черепа и позвоночника. У детей задействован также костный мозг костей ног и рук. Каждую минуту формируется более 2 миллионов эритроцитов, живущих около трёх месяцев. Интересный факт - красные клетки крови составляют примерно ¼ от всех клеток человека.

Тромбоциты

Раньше их называли еще кровяными пластинками. Это мелкие безъядерные клетки крови плоской формы, размер которых не превышает 2-4 мкм. Представляют собой фрагменты цитоплазмы, которые отделились от клеток костного мозга - мегакариоцитов.

Функцией тромбоцитов является формирование сгустка крови, который «затыкает» в сосудах поврежденные места, и обеспечение нормальной свертываемости крови. Также кровяные пластинки могут выделять соединения, способствующие росту клеток (так называемые факторы роста), поэтому они важны для заживления поврежденных тканей и способствуют их регенерации. Когда тромбоциты активизируются, то есть переходят в новое состояние, они принимают форму сферы с выростами (псевдоподиями), при помощи которых сцепляются друг с другом или сосудистой стенкой, закрывая тем самым её повреждение.

Отклонение количества тромбоцитов от нормы может приводить к различным заболеваниям. Так, уменьшение количества кровяных пластинок повышает риск кровотечений, а их увеличение приводит к тромбозу сосудов, то есть появлению сгустков крови, которые в свою очередь могут стать причиной инфарктов и инсультов, эмболии лёгочной артерии и закупорке сосудов в других органах.

Образуются тромбоциты в костном мозге и селезёнке. После формирования 1/3 из них разрушается, а оставшиеся циркулируют в кровотоке чуть дольше недели.

Корнеоциты

Некоторые клетки кожи человека также не содержат ядер. Из безъядерных клеток состоят два верхних слоя эпидермиса - роговой и блестящий (цикловидный). Оба состоят из одинаковых клеток - корнеоцитов, которые представляют собой бывшие клетки нижних слоев эпидермиса - кератиноциты. Эти клетки, образовавшись на границе наружного и среднего слоев кожи (дермы и эпидермиса), поднимаются по мере "взросления" все выше, в шиповатый, а затем и в зернистый слои эпидермиса. В кераноците накапливается вырабатываемый им белок кератин - важный компонент, который отвечает за прочность и упругость нашей кожи. В итоге клетка теряет ядро и практически все органеллы, поэтому большую её часть составляет белок кератин.

Получившиеся корнеоциты имеют плоскую форму. Плотно прилегая друг к другу, они образуют роговой слой кожи, служащий барьером для микроорганизмов и многих веществ - его чешуйки выполняют защитную функцию. Переходным от зернистого к роговому служит блестящий слой, также состоящий из потерявших ядра и органеллы кератиноцитов. По сути, корнеоциты - это мертвые клетки, так как никаких активных процессов в них не происходит.

Безъядерные клетки в трансплантологии

Для клонирования клеток нужных тканей в трансплантологии используются искусственно созданные безъядерные клетки. Так как генетическую информацию у эукариотических организмов хранит именно ядро, путём манипуляций с ним можно воздействовать на свойства клетки. Как бы фантастически это ни звучало, но можно заменить ядро и таким способом получить совершенно другую клетку. Для этого ядра удаляются или разрушаются различными способами - хирургическим, с помощью ультрафиолетового излучения или центрифугирования в сочетании с воздействием цитохалазинов. В полученную безъядерную клетку пересаживают новое ядро.

До сих пор учёные не пришли к общему мнению по поводу этичности клонирования, потому оно всё ещё находится под запретом.

Таким образом, фактически живые безъядерные клетки у высших (эукариотических) организмов почти не встречаются. Исключением являются клетки крови человека - эритроциты и тромбоциты, а также клетки флоэмы у растений. В остальных случаях безъядерные клетки нельзя назвать живыми, как, например, клетки верхних слоев эпидермиса или клетки, полученные искусственным путем для клонирования тканей в трансплантологии.

Всем известно, что человек является эукариотом. Это значит, что все его клетки имеют органеллу, в которой заключена вся генетическая информация, - ядро. Однако существуют и исключения. Есть ли в организме человека безъядерные клетки и каково их значение для жизнедеятельности?

Безъядерные клетки человека

Их нельзя сравнивать с прокариотами, обладающими типичным строением. Что же это за безъядерные клетки? Ядра нет в клетках крови - эритроцитах. Вместо данной органеллы они содержат сложный химический комплекс веществ, позволяющий им выполнять важнейшие для организма функции. Кровяные пластинки - тромбоциты и лимфоциты - также безъядерные клетки. Ядра нет и в клетках, которые называют стволовыми. Все перечисленные структуры объединяет еще один признак. Поскольку в них отсутствует ядро, они не способны к размножению. Это значит, что безъядерные клетки, примеры которых были приведены, после выполнения своей функции гибнут, а новые образуются в специализированных органах.

Эритроциты

Именно они определяют цвет нашей крови. Безъядерные клетки крови эритроциты имеют необычную форму - двояковогнутого диска, которая значительно увеличивает их поверхность при относительно малых размерах. Зато количество их просто поражает: в 1 кв. мм крови их находится до 5 млн! В среднем эритроцит живет до четырех месяцев, после чего погибает и нейтрализуется в селезенке и печени. Новые клетки формируются каждую секунду в красном костном мозге.

Функции эритроцитов

Что же вместо ядра содержат эти безъядерные клетки? Называются эти вещества гем и глобин. Первое является железосодержащим. Оно не только окрашивает кровь в красный цвет, но и образует нестойкие соединения с кислородом и углекислым газом. Глобин представляет собой вещество белковой природы. В его крупную молекулу погружен гем, содержащий заряженный ион железа. По механизму действия эти клетки можно сравнить с маршрутным такси. В легких они присоединяют кислород. С током крови он разносится ко всем клеткам и высвобождается там. При участии кислорода происходит процесс окисления органических веществ с выделением определенного количества энергии, которую человек использует для осуществления жизнедеятельности. Освободившееся место тут же занимает углекислый газ, который движется в обратном направлении - в легкие, где выдыхается. Этот процесс является необходимым условием жизни. Если кислород не поступает к клеткам, происходит их постепенное отмирание. Это может быть опасным для жизни организма в целом.

Эритроциты выполняют еще одну важную функцию. На их мембранах находится белковый маркер, который называется резус-фактором. Этот показатель, как и группа крови, очень важен во время переливания крови, при беременности, донорстве и хирургических операциях. Его обязательно устанавливают, поскольку при несовместимости может произойти так называемый резус-конфликт. Он является защитной реакцией, но может привести к отторжению плода или органов.

Нерациональное питание, вредные привычки, загрязненный воздух могут вызвать разрушение эритроцитов. Вследствие этого возникает тяжелое заболевание, которое называется анемией, или малокровием. При этом человек чувствует головокружение, слабость, одышку, шум в ушах. Кислородная недостаточность негативно сказывается на физической и умственной деятельности человека. Особенно опасна она в период беременности. Если через пуповину к плоду поступает недостаточно кислорода, это может привести к серьезным нарушениям в его развитии.

Строение тромбоцитов

Безъядерные клетки тромбоциты еще называют кровяными пластинками. В неактивном состоянии они действительно имеют плоскую форму, напоминающую линзу. А вот при повреждении сосудов они набухают, округляются, образуют непостоянные выросты наружного слоя - псевдоподии. Тромбоциты образуются в красном костном мозге и живут недолго - до 10 дней, обезвреживаясь в селезенке.

Процесс образования тромба

Матрикс кровяных пластинок содержит фермент, который называется тромбопластином. При нарушении целостности сосудов он оказывается в плазме. Под его действием белок крови протромбин переходит в свою активную форму, в свою очередь, действуя на фибриноген. В результате это вещество переходит в нерастворимое состояние. Оно превращается в белок фибрин. Его нити тесно переплетаются и образуют тромб. Защитная реакция свертывания крови предотвращает кровопотери. Однако образование тромба внутри сосуда очень опасно. Это может привести к его разрыву и даже гибели организма. Нарушение процесса свертываемости называется гемофилией. Это наследственное заболевание характеризуется недостаточным количеством тромбоцитов и приводит к излишней потере крови.

Стволовые клетки

Эти безъядерные клетки называются стволовыми не зря. Они действительно являются основой для всех других. Их еще называют "генетически чистыми". Стволовые клетки находятся во всех тканях и органах, но больше всего их содержит костный мозг. Они способствуют восстановлению целостности там, где это необходимо. Стволовые превращаются в любые другие при их разрушении. Казалось бы, при наличии такого волшебного механизма человек должен жить вечно. Почему же этого не происходит? Все дело в том, что с возрастом интенсивность дифференциации стволовых клеток значительно уменьшается. Они уже неспособны восстановить разрушенные ткани. Но есть и еще одна опасность. Существует большая вероятность превращения стволовых клеток в раковые, что неминуемо приведет к гибели любой живой организм.

Безъядерные клетки: примеры и черты отличия

В природе безъядерные клетки встречаются достаточно часто. Например, прокариотическими являются сине-зеленые водоросли и бактерии. Но, в отличие от безъядерных клеток человека, они не гибнут после выполнения своей биологической роли. Дело в том, что прокариоты имеют генетический материал. Поэтому они способны к делению, которое происходит путем митоза. В результате образуются две генетические копии материнской клетки. прокариот представлена кольцевой молекулой ДНК, которая удваивается перед делением. Этот аналог ядра еще называют нуклеоидом. У растений безъядерными являются живые клетки -

Итак, безъядерные клетки человека неспособны к делению, поэтому они существуют непродолжительный промежуток времени до выполнения своей функции. После этого происходит их разрушение и внутриклеточное переваривание. К ним относятся форменные элементы (эритроциты), кровяные пластинки (тромбоциты) и стволовые клетки.