Когда возникло электричество. Начало развития электрического освещения

При определении даты появления электричества в Российской империи можно пользоваться различными критериями. Если брать во внимание общественный резонанс, то такой датой следует считать 1879 год, когда в Петербурге был освещен электрическими лампами Литейный мост. История с электрификацией этого моста имеет несколько курьезный оттенок. Дело в том, что он был построен после того, как частные компании выкупили монополию у властей города на освещение улиц и мостов через Неву масляными и газовыми фонарями. Как следствие, оказался единственным местом, где на тот исторический момент можно было применить электрическое освещение.

Справедливости ради стоит упомянуть о том, что годом ранее в Киеве для освещения одного из цехов железнодорожных мастерских были задействованы несколько электрических фонарей, однако это событие осталось без внимания широкой публики.

Многие придерживаются мнения, что с юридической точки зрения эра электричества началась 30 января 1880 года, когда в Русском техническом обществе был создан электротехнический отдел. Именно этой вновь созданной структуре и вменялось в обязанности курировать вопросы, связанные с развитием и внедрением электричества в жизнь державы.

К знаковым датам в истории возникновения электричества в России можно отнести и 15 мая 1883 года, когда по случаю вступления на престол Александра ІІІ была выполнена иллюминация Кремля, для чего даже построили на Софийской набережной специальную электростанцию. В этом же году электрифицируется главная улица Петербурга, а через несколько месяцев и Зимний дворец.

В июле 1886 года по Указу императора создается «Общество электрического освещения», которое разрабатывает генеральный план электрификации Москвы и Петербурга.

С 1888 года начинается целенаправленная работа по строительству первых электростанций.

Интересные факты из истории появления электричества в России

При изучении вопроса об электрификации страны можно столкнуться с рядом интересных и любопытных фактов. Так, первым европейским городом, полностью освещенным электрическими фонарями, стало в 1881 году Царское село.

В июле 1892 года был запущен первый в империи электрический трамвай. Это произошло в Киеве. В 1895 году построена первая в России ГЭС на реке Большая Охта в Петербурге. Уже в 1897 году была пущена первая электростанция на Раушской набережной в Москве, которая вырабатывала трехфазный переменный ток, что позволяло передавать его без потери мощности на достаточно большие расстояния.

С начала 20 века электростанции стали строиться и в других городах Российской империи (Курск, Ярославль, Чита, Владивосток). По состоянию на 1913 год электростанции страны суммарно вырабатывали около 2 млн МВт/ч в год электроэнергии.

Источники:

  • История изучения электричества

Долгое время человечество существовало без электрической энергии. Но с появлением первой электростанции стало понятно, что это одно из самых важных событий в мире.

Становление новой индустрии

Во второй половине 19 века газовые осветительные лампы заменили на электрические, которые получили подпитку постоянного тока. Произошло это в Нью-Йорке 4 сентября 1882 года. Известный американский изобретатель Томас Альва Эдисон запустил самую первую электростанцию. Это изобретение имело возможность делить современным способом. По силовым кабелям с отводами, проложенными под землей, подавалась электричество определенному потребителю. Вырабатывалась первоначально на блок-станции, которую Эдисон построил в купленном для этой цели доме. Деньги для экспериментального проекта выделил Морган, американский предприниматель, .

Первый запуск электростанции

В день запуска электростанции собрались высокопоставленные лица. Изначально эксперимент проходил благополучно, в момент подключения к первому источнику электроэнергии второго случился неожиданный "цирк". Генераторы затряслись, стали издавать гул, окружающие от испуга разбежались. Работа генераторов, подключенных таким способом, позволила одному из них стать генератором для другого. Томас Эдисон установил несколько генераторов, их общая мощность составила более 500 кВт. Двигатели работали от паровых котлов, которые механически снабжали углем. Ременная в этой системе отсутствовала, а напряжение регулировалось автоматически. Такая электростанция могла обслужить район Нью-Йорка, он составлял 2,5 квадратных километра площади.

Первая электростанция подавала ток низкого напряжения, следовательно происходили большие потери в электрических проводах. Они нагревались, эффективность подачи энергии на расстояние терялась. Из-за этих неудобств приходилось создавать электростанции в центре города, а значит возникала трудность с очередными вложениями средств. Проблема усугублялась недостаточностью земельных участков, их дороговизной. Поэтому первые электростанции выполняли в США в многоэтажках. Безусловно подвоз топлива и воды создавал определенные трудности.

Бесплатный эксперимент

Изначально первая электростанция обслуживала потребителей бесплатно, т.к. считалась экспериментальной. Эта станция не имела измерительных систем учета. Существовало только реле, которое необходимо было для выключения станции в случае перегруза в сети. А каждый генератор имел свой индивидуальный выключатель. Современное общество не имеет возможности увидеть воочию первую электростанцию, т.к. она не дожила до наших дней.

Видео по теме

Современному человеку трудно представить жизнь без электричества. Оно прочно вошло в нашу жизнь, и мы мало задумываемся над тем, когда оно появилось. А ведь именно благодаря электричеству стали более интенсивно развиваться все направления науки и техники. Кто изобрел электричество, когда оно впервые появилось в мире?

История возникновения

Еще до нашей эры философ из Греции Фаллес заметил, что после трения янтаря о шерсть к камню притягиваются мелкие предметы. Затем исследованием таких явлений долгое время никто не занимался. Только в 17 веке исследовав магниты, их свойства английский ученый Уильям Гильберг ввел новый термин «электричество». Ученые стали больше проявлять интереса к нему и заниматься исследованиями в этой области.

Гильбергу удалось изобрести прообраз самого первого электроскопа, он назывался версор. С помощью этого прибора он установил, что кроме, янтаря и другие камни могут к себе притягивать мелкие предметы. В число камней входят:

Благодаря созданному прибору ученый смог провести несколько опытов и сделать выводы. Он понял, что пламя имеет свойство серьезно влиять на электрические свойства тел после трения. Ученый заявил, что гром и молния — явления электрической природы.

Великие открытия

Первые опыты по передаче электричества на малые расстояния были проведены в 1729 году. Ученые сделали вывод, что не все тела могут передавать электричество. Через несколько лет после ряда испытаний француз Шарль Дюфе заявил, что есть два типа электрического заряда — стеклянного и смоляного . Они зависят от материала, который используется для трения.

Затем учеными с разных стран были созданы конденсатор и гальванический элемент, первый электроскоп, медицинский электрокардиограф. Первая лампочка накаливания появилась в 1809 году, которую создал англичанин Деларю. Спустя 100 лет, Ирнвинг Ленгмюр разработал лампочку с вольфрамовой спиралью, заполненной инертным газом.

В 19 веке было много очень важных открытий , благодаря которым появилось электричество в мире Большую лепту в области открытий внесли известные всему миру ученые:

Они изучали свойства электричества и многие из них названы в их честь. В конце 19 века ученые-физики делают открытия о существовании электрических волн. Им удается создать лампу накаливания и передавать электрическую энергию на большие расстояния. С этого момента электричество медленно, но уверенно начинает распространяться по всей планете.

Когда появилось электричество в России?

Если говорить об электрификации на территории Российской империи, то в этом вопросе нет конкретной даты . Всем известно, что в 1879 году в Санкт-Петербурге сделали освещение по всему Литейному мосту. Он освещался с помощью ламп. Однако, в Киеве были установлены электрические фонари в одном из железнодорожных цехов на год раньше. Это событие не привлекло к себе внимание, поэтому официальной датой появления электрического освещения в Российской империи считается 1879 год.

Первый электротехнический отдел появился в России 30 января 1880 года в Русском техническом обществе. Отдел был обязан курировать внедрение электричества в повседневную жизнь государства. Уже в 1881 году Царское Село было полностью освещенным населенным пунктом и стало первым современным и европейским городом.

15 мая 1883 года считается также знаковой датой для страны. Это связано с проведением иллюминации Кремля. В это время вступал на престол император Александр III, а иллюминация была приурочена к такому важному событию. Почти сразу после этого исторического события освещение было проведено сначала на главной улице и затем в Зимний дворец Санкт-Петербурга.

По указу императора в 1886 году было учреждено «Общество электроосвещения». В его обязанности входило освещение двух главных городов — Москва и Санкт-Петербург. Уже через два года началось строительство электростанций по всем крупнейшим городам. Первый электротрамвай в России был запущен в 1892 году. В Петербурге через 4 года пустили в эксплуатацию первую ГЭС. Она была построена на реке Большая Охта.

Важным событием было появление первой электростанции в Москве в 1897 году. Ее построили на Раушской набережной с возможностью вырабатывать переменный трехфазный ток . Она сделала доступной передачу электричества на большие расстояния и использовать его без потери мощности. Строительство электростанций в других российских городах стало развиваться только перед Первой мировой войной.

Интересные факты истории появления электричества в России

Если внимательно изучать некоторые факты электрификации Российского государства можно узнать много любопытной информации.

Первую лампочку накаливания с угольным стержнем изобрел в 1874 году А.Н.Лодыгин. Устройство было запатентовано крупнейшими странами Европы. Через время ее усовершенствовал Т. Эдиссон и лампочку стали использовать по всей планете.

Русский электротехник П.Н. Яблочков в 1876 году закончил разработку электрической свечи. Она стала проще, дешевле и удобней чем лампочка Лодыгина в эксплуатации.

В составе Русского технического общества был создан Особый Электротехнический отдел. В него входили П.Н. Яблочков, А.Н.Лодыгин, В.Н.Чиколев и другие активные физики и электротехники. Главная задача отдела было — содействие развитию электротехники в России.

Открытие электричества заняло тысячи лет, так как было достаточно сложно разработать правильную теорию, объясняющую суть феномена. Учёные-физики объединили магнетизм и электричество, пытаясь выяснить, как эти силы способны притягивать предметы, вызывать онемение частей тела и даже вызвать пожары. В этой статье вы узнаете, когда изобрели электричество и историю электричества.

Было три основных факта проявления электрических сил, которые привели учёных к изобретению электричества: электрические рыбы, статическое электричество и магнетизм. Древнеегипетские врачи знали об электрических разрядах, которые генерировал нильский сом. Они даже пытались использовать измельчённого до порошка сома как лекарство. Платон и Аристотель в 300-х годах до н.э. упоминали об электрических скатах, которые оглушают электричеством людей. Преемник их идей Теофраст знал, что электрические скаты могут оглушить человека, даже не прикасаясь к нему напрямую, посредством мокрых конопляных сетей рыбаков или их трезубцев.

те, кто экспериментировал с ним, сообщают, что если его выбрасывает на берег живым, а вы будете лить на него воду сверху, то можете почувствовать онемение, восходящее по руке, и притупление чувствительности от прикосновения воды. Кажется, будто рука оказалась чем-то инфицирована.

Плиний Старший продвигается дальше в изучении скатов и отмечает новую информацию, связанную с проводимостью электричества различными веществами. Так, он обратил внимание на то, что металл и вода проводят электричество лучше, чем всё остальное. Также он обратил внимание на ряд целебных свойств при поедании скатов. Такие римские врачи, как Скрикониус Ларгус, Диоскуридес и Гален, начали использовать скатов, чтобы лечить хронические головные боли, подагру и даже геморрой. Гален полагал, что электричество ската как-то связано со свойствами магнетита. Стоит отметить, что инки также знали об электрических угрях.

Около 1000 шода нашей эры ибн Сина также выяснил, что электрические удары скатов могут излечить хроническую головную боль. В 1100-х годах ибн Рушд в Испании писал о скатах и о том, как они могут вызвать онемение у рук рыбаков, даже не трогая сеть. Ибн Рашд пришёл к выводу, что эта сила оказывает такой эффект лишь на некоторые предметы, в то время как другие могли спокойно пропускать её через себя. Абд аль-Латиф, работавший в Египте около 1200 года н.э., сообщил, что электрический сом в Ниле может делать то же самое, что и скаты, но намного сильнее.

Другие учёные начали изучать статическое электричество. Греческий учёный Фалес около 630 года до нашей эры знал, что если потереть янтарь о шерсть, а затем коснуться его, то можно получить электрический разряд.

Само слово «электричество», вероятно, происходит из финикийского языка от слова, означающего «светящийся свет» или «солнечный луч», которое греки использовали для обозначения янтаря (др.-греч. ἤλεκτρον: электрон). Теофраст в 300-х годах до нашей эры знал другой особый камень — турмалин, который притягивает к себе небольшие предметы, такие как кусочки ясеня или меха, если его разогреть. В 100-х годах н.э. в Риме Сенека сделал несколько замечаний о молниях и феномене огней святого Эльма. Уильям Гилберт в 1600 году узнал, что стекло может получить статический заряд, также как и янтарь. По мере колонизации Европа становилась всё богаче, происходило развитие образования. В 1660 году Отто фон Герике создал вращающуюся машину для производства статического электричества.

Огни святого Эльма

Первая электрическая машина Отто Герике. Большой шар из застывшей серы вращается, а учёный прижимает к нему руку или шерсть, чтобы наэлектризовать его.

В третьем направлении изучения электричества учёные работали с магнитами и магнетитом. Фалес знал, что магний способен намагнитить железные прутья. Индийский хирург Сушрута около 500 г. до н.э. использовал магнетит для хирургического удаления железных осколков. Около 450 г. до н.э. Эмпедокл, работавший в Сицилии, считал, что, возможно, невидимые частицы каким-то образом тянули железо к магниту, подобно реке. Он сравнивал это с тем, как невидимые частицы света проникают к нам в глаза, чтобы мы могли видеть. Философ Эпикур последовал за идеей Эмпедокла. Между тем в Китае учёные тоже не сидели без дела. В 300-х годах н.э. они также работали с магнитами, используя недавно изобретённую швейную иглу. Они разработали способ изготовления искусственных магнитов, а около 100 г. до н.э. они .

Магнетит

В 1088 году н.э. Шэнь Го в Китае писал о магнитном компасе и его способности находить север. К 1100-м годам китайские корабли были оснащены компасами. Около 1100 года н.э. исламские астрономы также переняли технологию изготовления китайских компасов, хотя в Европе к этому времени это уже было нормальным явлением, когда их упоминал Александр Некем в 1190 году. В 1269 году, вскоре после создания Неаполитанского университета, когда Европа стала ещё более развитой, Питер Перегрин на юге Италии написал первое европейское исследование о магнитах. Ульиям Гилберт в 1600 году понял, что компасы работают потому, что сама Земля представляет из себя магнит.

Примерно в 1700 году эти три направления исследований начали объединяться, поскольку учёные увидели их взаимосвязь.

В 1729 году Стивен Грей показывает, что электричество можно передавать между вещами, соединяя их. В 1734 году Шарль Франсуа Дюфе понял, что электричество способно притягивать и отталкивать. В 1745 году в городе Лейден учёным Питером ван Мушенбруком и его учеником Кюнеусом создана банка, которая может хранить электроэнергию и сразу же разряжать её, тем самым став первым в мире конденсатором. Бенджамин Франклин начинает свои собственные эксперименты с батареями (как он их называет), которые способны хранить электричество, постепенно разряжая их. Также он начал свои эксперимент с электрическими угрями и прочим. В 1819 году Ганс Христиан Эрстед понял, что электрический ток может влиять на стрелку компаса. Изобретение электромагнита в 1826 году начинает эру электрических технологий, таких как телеграф или электрических двигатель, способный экономить нам массу времени и изобретать другие машины. Что уже говорить про изобретение , транзисторов или .

Луиджи Гальвани (1737-1798) был по специальности биолог, но работал в лаборатории, где проводились опыты с электричеством. Гальвани наблюдал явление, которое было известно многим еще до него; оно заключалось в том, что если ножной нерв мертвой лягушки возбудить искрой от электрической машины, то начинала сокращаться вся лапка. Но однажды Гальвани заметил, что лапка пришла в движение, когда с нервом лапки соприкасался только стальной скальпель. Удивительнее всего было то, что между электрической машиной и скальпелем не было никакого контакта. Это поразительное открытие заставило Гальвани поставить ряд опытов для обнаружения при-чины электрического тока. Один из экспериментов был поставлен Гальвани с целью выяснить, вызывает ли такие же движения в лапке электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько лягушачьих лапок в окне, закрытом железной решеткой. И он нашел, в противоположность своим ожиданиям, что сокращения лапок происходят в любое время, вне всякой зависимости от состояния погоды. Присутствие рядом электрической машины или другого источника электричества оказалось не нужным. Гальвани установил далее, что вместо железа и латуни можно использовать любые два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали никакого эффекта. Таким образом, возникновение тока все еще оставалось тайной. Где же появляется ток - только в тканях тела лягушки, только разнородных металлах или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к заключению, что ток возникает исключительно в тканях тела лягушки. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричества какого-либо другого происхождения.

Но вскоре другой итальянский ученый, Алессандро Вольта, дал иное объяснение этим опытам. Отвергая идею «животного» электричества, Вольта утверждал, что лягушка в опытах Гальвани «есть чувствительнейший электрометр», а источником электричества является контакт двух разнородных металлов.

Эти соображения и были положены Вольта в основу его теории «контактного электричества». Однако многочисленные эксперименты убедили Вольта в том, что простого контакта металлов недостаточно для получения сколько-нибудь заметного тока; выяснилось, что непрерывный электрический ток может возникнуть лишь в замкнутой цепи, составленной из различных проводников: металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).

Эта теория, разработанная А. Вольтой в 1794 году, позволила создать первый в мире источник электрического тока в виде так называемого Вольтова столба. Это устройство представляло собой простейшую батарею гальванических элементов с одной жидкостью: между парами цинковых и медных пластин (дисков) прокладывались суконные кружки, смоченные щелочью или кислотой. Вольта не удалось понять того факта, что электрический ток возникает в результате химических процессов между металлами и жидкостями.

н по-своему объяснял необходимость применения наряду с твердыми проводниками -- металлами -- жидких проводников. По его мнению, при соприкосновении двух различных металлов возникает «электровозбудительная» или «электродвижущая» сила, под действием которой электричество одного знака сосредоточивается на одном из металлов, а электричество противоположного знака -- на другом.

Если составить столб из нескольких пар различных металлов, например цинка и серебра (без прокладок), то каждая цинковая пластина, заряженная электричеством одного знака, будет находиться в соприкосновении с двумя одинаковыми серебряными пластинами, заряженными электричеством противоположного знака, и их общее действие будет взаимно уничтожаться.

Для того чтобы действие отдельных пар суммировалось, необходимо обеспечить соприкосновение каждой цинковой пластины только с одной серебряной, т. е. исключить встречный металлический контакт. Это осуществляется с помощью проводников второго класса (влажных суконных кружков); такие кружки разделяют пары металлов и в то же время не препятствуют движению электричества.

Таким образом, Вольта, не поняв действительной причины возникновения тока, практически пришел к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую. Создание первого источника электрического тока сыграло громадную роль как в развитии науки об электричестве и магнетизме, так и в расширении их практических приложений.

Первые же опыты с электрическим током не могли не привести к открытию некоторых присущих ему свойств. Поэтому рассматриваемый период в истории электричества характеризуем главным образом обнаружением и изучением различных действий электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в., привели к открытию химических, тепловых, световых и магнитных действий.

В 1800 г. вскоре после получения известия об изобретении вольтова столба члены Лондонского королевского общества Антони Карлейль и Вильям Никольсон произвели ряд опытов с вольтовым столбом, которые привели их к открытию нового явления: при прохождении тока через воду имело место выделение газовых пузырьков; исследовав выделявшиеся газы, они правильно установили, что это кислород и водород. Таким образом, впервые был осуществлен электролиз воды.

Вскоре после опубликования работ А. Карлейля и В. Никольсона (июль 1800 г.) появилась в немецком научном журнале «Annalen der Physik» статья немецкого физика Иоганна В. Риттера, также осуществившего разложение воды током. После открытия действия тока на воду ряд ученых заинтересовался вопросом о том, к каким результатам приведет пропускание тока через другие жидкости. В том же 1800 г. голландский химик Вильям Крейкшенк, пропуская ток через раствор поваренной соли, получил на отрицательном полюсе едкий натр, не подозревая, что здесь имела место вторичная реакция: поваренная соль разлагалась на Na и С1 причем натрий, жадно соединяясь с водой, образовывал едкий натр.

Указанные эксперименты положили начало исследованию химических действий гальванического тока, получивших впоследствии важное практическое применение.

Тепловые действия тока были обнаружены в накаливании тонких металлических проводников и воспламенении посредством искр легко воспламеняющихся веществ. Световые явления наблюдались в виде искр различной длины и яркости.

В 1802 г. итальянский физик Джованни Д. Романьози обнаружил, что электрический ток, протекающий по проводнику, вызывает отклонение свободно вращающейся магнитной стрелки, сходящейся вблизи этого проводника. Однако тогда, в первые годы изучения электрического тока, явление, открытое Романьози, имеющее, как впоследствии.выяснилось, громадное значение, не получило должной оценки. Только позднее, в 1820 г., когда наука об электричестве достигла более высокого уровня, магнитное действие тока, описанное датским физиком Гансом Христианом Эретедом (1777--1851 гг.), стало предметом глубокого и всестороннего изучения.

Среди многочисленных исследований явлений электрическое тока, произведенных в первые годы посте построения вольтову столба, наиболее выдающимися были труды первого русского электротехника, профессора физики Петербургской Медико-хирургической академии, академика Василия Владимировича Петрова (1761 -- 1834 гг.), так как в них впервые была показана в доказана возможность практических применений электричества.

Будучи хорошо знакомым с опытами, производящимися с вольтовым столбом как в России, так и за границей, Петров пришел к правильному выводу о том, что наиболее полное и всестороннее изучение гальванических явлений возможно только при условии создания большой батареи, т.е. по современной терминологии -- источника тока высокого напряжения. Поэтому он добивается перед руководством Медико-хирургической академии выделения средств для постройки «такой огромной величины батареи, чтобы оною можно было надежнее производить такие новые опыты», каких не производил никто из физиков.

В апреле 1802 г. батарея В. В. Петрова, состоявшая из 4200 медных в цинковых кружков или 2100 медно-цинковых элементов (Петров называл ее «огромная наипаче батарея»), была готова. Она располагалась в большом деревянном ящике, разделенном по длине на четыре отделения. Стенки ящика и разделяющих перегородок были покрыты сургучным лаком. Общая длина гальванической батареи Петрова составляла 12 м -- это был крупнейший в мире источник электрического тока.

Кроме того, Петров наблюдал явление электрического разряда между концами слегка разведенных углей как в воздухе, так и в других газах и вакууме, получившее название электрической дуги. В. В. Петров не только описал открытое им явление, но и указал на возможность его использования для освещения или плавки металлов и тем самым впервые высказал мысль о практическом применении электрического тока. С этого момента и должно начинать историю электротехники как самостоятельной отрасли техники.

Современную жизнь невозможно представить без электричества, этот тип энергии используется человечеством наиболее полно. Однако далеко не все взрослые люди способны вспомнить из школьного курса физики определение электрического тока (это направленный поток протекания элементарных частиц, имеющих заряд), совсем мало кто понимает, что же это такое.

Что такое электричество

Наличие электричества как явления объясняется одним из главных свойств физической материи – способностью обладать электрическим зарядом. Они бывают положительными и отрицательными, при этом объекты, обладающие разнополюсными знаками, притягиваются друг к другу, а «равнозначные», наоборот, отталкиваются. Движущиеся частицы также являются источником возникновения магнитного поля, что лишний раз доказывает связь между электричеством и магнетизмом.

На атомарном уровне существование электричества можно объяснить следующим образом. Молекулы, из которых состоят все тела, содержат атомы, составленные из ядер и электронов, циркулирующих вокруг них. Эти электроны могут при определенных условиях отрываться от «материнских» ядер и переходить на другие орбиты. Вследствие этого некоторые атомы становятся «недоукомплектованными» электронами, а у некоторых их в избытке.

Поскольку природа электронов такова, что они текут туда, где их не хватает, постоянное перемещение электронов от одного вещества к другому и составляет электрический ток (от слова «течь»). Известно, что электричество имеет направление от полюса «минус» к полюсу «плюс». Поэтому вещество с нехваткой электронов считается заряженным положительно, а с переизбытком – отрицательно, и именуется оно «ионами». Если речь идет о контактах электрических проводов, то положительно заряженный называется «нулевой», а отрицательно – «фаза».

В разных веществах расстояние между атомами различно. Если они очень маленькие, электронные оболочки буквально касаются друг друга, поэтому электроны легко и быстро переходят от одного ядра к другому и обратно, чем создается движение электрического тока. Такие вещества, например, как металлы, называются проводниками.

В других веществах межатомные расстояния относительно велики, поэтому они являются диэлектриками, т.е. не проводят электричество. Прежде всего, это резина.

Дополнительная информация . При испускании ядрами вещества электронов и их движении происходит образование энергии, которая прогревает проводник. Такое свойство электричества называется «мощность», измеряется она в ваттах. Также эту энергию можно преобразовывать в световую или другой вид.

Для непрерывного течения электричества по сети потенциалы на конечных точках проводников (от линий ЛЭП до домовой электропроводки) должны быть разными.

История открытия электричества

Что такое электричество, откуда оно берется, и прочие его характеристики фундаментально изучает наука термодинамика с сопредельными науками: квантовой термодинамикой и электроникой.

Сказать, что какой-либо ученый изобрел электрический ток, было бы неверным, ибо с древних времен много исследователей и ученых занимались его изучением. Сам термин «электричество» ввел в обиход греческий ученый-математик Фалес, это слово означает «янтарь», поскольку именно в опытах с янтарной палочкой и шерстью Фалесу получилось выработать статическое электричество и описать это явление.

Римлянин Плиний также занимался исследованием электрических свойств смолы, а Аристотель изучал электрических угрей.

В более позднее время первым, кто досконально стал изучать свойства электрического тока, стал В. Жильбер, врач английской королевы. Немецкий бургомистр из Магдебурга О.ф Герике считается создателем первой лампочки из натертого серного шарика. А великий Ньютон вывел доказательство существования статического электричества.

В самом начале 18 века английский физик С. Грей поделил вещества на проводники и непроводники, а голландским учёным Питером ван Мушенбруком была изобретена лейденская банка, способная накапливать электрический заряд, т. е. это был первый конденсатор. Американский ученый и политический деятель Б. Франклин впервые в научных терминах вывел теорию электричества.

Все 18 столетие было богатым на открытия в сфере электричества: установлена электрическая природа молнии, сконструировано искусственное магнитное поле, выявлено существование двух видов зарядов («плюс» и «минус») и, как следствие, двух полюсов (естествоиспытатель из США Р. Симмер), Кулоном открыт закон взаимодействия между точечными электрозарядами.

В следующем веке изобретены батарейки (итальянский ученый Вольта), дуговая лампа (англичанин Дейви), а также прототип первой динамо-машины. 1820 год считается годом зарождения электродинамической науки, сделал это француз Ампер, за что его имя присвоили единице для показаний силы электротока, а шотландец Максвелл вывел световую теорию электромагнетизма. Россиянин Лодыгин изобрел лампу накаливания, имеющую стержень из угля, – прародитель современных лампочек. Чуть более ста лет назад была изобретена неоновая лампа (французский ученый Жорж Клод).

И по сей день исследования и открытия в области электричества продолжаются, например, теория квантовой электродинамики и взаимодействия слабых электрических волн. Среди всех ученых, занимавшихся исследованием электричества, особое место принадлежит Николе Тесла –многие его изобретения и теории о том, как работает электричество, до сих пор не оценены по достоинству.

Природное электричество

Долгое время считалось, что электричества «самого по себе» не существует в природе. Это заблуждение развеял Б. Франклин, который доказал электрическую природу молний. Именно они, по одной из версий ученых, способствовали синтезу первых аминокислот на Земле.

Внутри живых организмов также вырабатывается электричество, которое порождает нервные импульсы, обеспечивающие двигательные, дыхательные и другие жизненно необходимые функции.

Интересно. Многие ученые считают человеческое тело автономной электрической системой, которая наделена функциями саморегуляции.

У представителей животного мира тоже имеется свое электричество. Например, некоторые породы рыб (угри, миноги, скаты, удильщики и другие) используют его для защиты, охоты, добывания пищи и ориентации в подводном пространстве. Особый орган в теле этих рыб вырабатывает электроэнергию и накапливает ее, как в конденсаторе, его частота – сотни герц, а напряжение – 4-5 вольт.

Получение и использование электричества

Электричество в наше время – это основа комфортной жизни, поэтому человечество нуждается в его постоянной выработке. Для этих целей возводятся различного рода электростанции (гидроэлектростанции, тепловые, атомные, ветровые, приливные и солнечные), способные с помощью генераторов вырабатывать мегаватты электричества. В основе этого процесса лежит преобразование механической (энергия падающей воды на ГЭС), тепловой (сжигание углеродного топлива – каменного и бурого угля, торфа на ТЭЦ) или межатомной энергии (атомного распада радиоактивных урана и плутония на АЭС) в электрическую.

Много научных исследований посвящено электрическим силам Земли, все они стремятся использовать атмосферное электричество для блага человечества – выработки электроэнергии.

Учеными предложено множество любопытных устройств генераторов тока, которые дают возможность добывать электричество из магнита. Они используют способности постоянных магнитов совершать полезную работу в виде крутящего момента. Он возникает в результате отталкивания между одноименно заряженными магнитными полями на статорном и роторном устройствах.

Электричество популярнее всех остальных источников энергии, поскольку обладает множеством преимуществ:

  • легкое перемещение до потребителя;
  • быстрый перевод в тепловой или механический вид энергии;
  • возможны новые области его применения (электромобили);
  • открытие все новых свойств (сверхпроводимость).

Электричество – это движение разнозаряженных ионов внутри проводника. Это большой подарок от природы, который люди познают с давних времен, и процесс этот еще не закончен, хотя человечество уже научилось добывать его в огромных объемах. Электричество играет огромную роль в развитии современного общества. Можно сказать, что без него жизнь большинства наших современников просто остановится, ведь недаром при отключении электричества люди говорят, что «отключили свет».

Видео