Как работает схема горнера. Презентация на тему "схема горнера"

Слайд 3

Горнер Вильямc Джордж (1786-22.9.1837)-английский математик. Родился в Бристоле. Учился и работал там же, затем в школах Бата. Основные труды по алгебре. В 1819г. опубликовал способ приближенного вычисления вещественных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII в.) Именем Горнера названа схема деления многочлена на двучлен х-а.

Слайд 4

СХЕМА ГОРНЕРА

Способ деления многочлена n-й степени на линейный двучленх - а, основанный на том, что коэффициенты неполного частного и остатокr связаны с коэффициентами делимого многочлена и с а формулами:

Слайд 5

Вычисления по схеме Горнера располагают в таблицу:

Пример 1. Разделить Неполное частное равно х3-х2+3х - 13 и остаток равен 42=f(-3).

Слайд 6

Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

Слайд 7

Пример2.

Докажем, что многочлен Р(х)=х4-6х3+7х-392 делится на х-7,и найдем частное от деления. Решение. Используя схему Горнера, найдем Р(7): Отсюда получаем Р(7)=0, т.е. остаток при делении многочлена на х-7 равен нулю и, значит, многочлен Р(х) кратен (х-7).При этом числа во второй строке таблицы являются коэффициентами частного от деления Р(х) на (х-7), поэтому Р(х)=(х-7)(х3+х2+7х+56).

Слайд 8

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x3 – 5x2 – 2x + 16 = (x – 2)Q(x), где Q(x) − многочлен второй степени

Слайд 9

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x – 2. Значит, результат деления: 1 · x2 + (–3)x + (–8) = x2 – 3x – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак: x3 – 5x2 – 2x + 16 = (x – 2)(x2 – 3x – 8).

Описание алгоритма

Задан многочлен :

.

Пусть требуется вычислить значение данного многочлена при фиксированном значении . Представим многочлен в следующем виде:

.

Определим следующую последовательность:

… …

Искомое значение . Покажем, что это так.

В полученную форму записи подставим и будем вычислять значение выражения, начиная со внутренних скобок. Для этого будем заменять подвыражения через :

Использование схемы Горнера для деления многочлена на бином

При делении многочлена на получается многочлен с остатком .

При этом коэффициенты результирующего многочлена удовлетворяют рекуррентным соотношениям:

, .

Таким же образом можно определить кратность корней (использовать схему Горнера для нового полинома). Так же схему можно использовать для нахождения коэффициентов при разложении полинома по степеням:

Примечания

См. также

Литература

  • Ананий В. Левитин Глава 6. Метод преобразования: Схема Горнера и возведение в степень // Алгоритмы: введение в разработку и анализ = Introduction to The Design and Analysis of Aigorithms. - М .: «Вильямс», 2006. - С. 284-291. - ISBN 0-201-74395-7
  • Волков Е. А. § 2. Вычисление значений многочлена. Схема Горнера // Численные методы. - Учеб. пособие для вузов. - 2-е изд., испр. - М .: Наука, 1987. - 248 с.
  • С. Б. Гашков §14. Схема Горнера и перевод из одной позиционной системы в другую // Системы счисления и их применение . - М .: МЦНМО , 2004. - С. 37-39. - (Библиотека «Математическое просвещение»). - ISBN 5-94057-146-8

Ссылки

  • Вычисление многомерных полиномов - обобщение схемы Горнера на случай полинома от нескольких переменных.

Wikimedia Foundation . 2010 .

  • Хлорхинальдол
  • Штильмарк, Александр Робертович

Смотреть что такое "Схема Горнера" в других словарях:

    ГОРНЕРА СХЕМА - прием для нахождения неполного частного и остатка при делении многочлена на двучлен, где все коэффициенты лежат в нек ром поле, напр., в поле комплексных чисел. Всякий многочлен единственным способом представим в виде где есть неполное частное,… … Математическая энциклопедия

    Метод Горнера - Схема Горнера (или правило Горнера, метод Горнера) алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Метод Горнера позволяет найти корни многочлена, а также вычислить производные… … Википедия

    Корень многочлена - У этого термина существуют и другие значения, см. Корень (значения). Корень многочлена (не равного тождественно нулю) над полем k элемент, такой что выполняются два следующих равносильных условия: данный многочлен делится на многочлен;… … Википедия

    Деление многочленов столбиком - В алгебре деление многочленов столбиком алгоритм деления многочлена на многочлен, степень которого меньше или равна степени многочлена. Алгоритм представляет собой обобщенную форму деления чисел столбиком, легко реализуемую вручную. Для… … Википедия

    Хорнер, Уильям Джордж - Уильям Джордж Хорнер (1786 год, Бристоль 22 сентября 1837 года) британский математик. Родился в 1786 году в городе Бристоль в Англии. Получил образование в Кингствудской школе Бристоля. В возрасте 14 лет он стал помощником директора в… … Википедия

    Плечевое сплетение - I Плечевое сплетение (plexus brachialis) сплетение нервных волокон передних ветвей 4 8 шейных и 1 2 грудных спинномозговых нервов в несколько стволов и пучков, в результате последующего разделения которых формируются короткие и длинные нервы… … Медицинская энциклопедия

    РАДИКУЛИТЫ - (от лат. radix корень), заболевания корешков спинномозговых нервов, термин, утвердившийся в начале 20 в. благодаря работам Дежерина и его школы. В основе Р. лежит воспалительно дегенеративный процесс в корешках [см. отдельную таблицу (ст. 255… …

    ЩИТОВИДНАЯ ЖЕЛЕЗА - (gl. thyreoidea, син. corpus thyreoideum), одна из важнейших желез внутренней секреции позвоночных животных. В эмбриональном развитии Щ. ж. возникает из эпителия нижней стенки жаберной части кишечника; у личинок круглоротых рыб она имеет еще вид… … Большая медицинская энциклопедия

    Радикулит - I Радикулит (radiculitis; лат. radicula корешок + itis) воспалительное и компрессионное поражение корешков спинномозговых нервов. Сочетанное поражение переднего и заднего корешков на уровне их соединения в общий канатик (рис.) ранее обозначали… … Медицинская энциклопедия

    Спина́льное кровообраще́ние - (синоним спинномозговое кровообращение) Установлено, что несколько верхних шейных сегментов спинного мозга снабжают кровью передняя и задняя спинальные артерии, отходящие от позвоночных артерий. Сегменты, расположенные ниже сегментов CIII CIV,… … Медицинская энциклопедия








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Урок усвоения и закрепления первичных знаний.

Цель урока:

  • Ознакомить учеников с понятием корней многочлена, научить находить их. Усовершенствовать навыки применения схемы Горнера по разложению многочлена по степеням и деления многочлена на двучлен.
  • Научиться находить корни уравнения с помощью схемы Горнера.
  • Развивать абстрактное мышление.
  • Воспитывать вычислительную культуру.
  • Развитие межпредметных связей.

Ход урока

1. Организационный момент.

Сообщить тему урока, сформулировать цели.

2. Проверка домашнего задания.

3. Изучение нового материала.

Пусть F n (x)= a n x n +a n-1 x n-1 +...+ a 1 x +a 0 - многочлен относительно x степени n, где a 0 , a 1 ,...,a n –данные числа, причем a 0 не равно 0. Если многочлен F n (x) разделить с остатком на двучлен x-a, то частное (неполное частное) есть многочлен Q n-1 (x) степени n-1, остаток R есть число, при этом справедливо равенство F n (x)=(x-a) Q n-1 (x) +R. Многочлен F n (x) делится нацело на двучлен (x-a) только в случае R=0.

Теорема Безу: Остаток R от деления многочлена F n (x) на двучлен (x-a) равен значению многочлена F n (x) при x=a, т.е. R= P n (a).

Немного истории. Теорема Безу, несмотря на внешнюю простоту и очевидность, является одной из фундаментальных теорем теории многочленов. В этой теореме алгебраические свойства многочленов (которые позволяют работать с многочленами как с целыми числами) связываются с их функциональными свойствами (которые позволяют рассматривать многочлены как функции). Одним из способов решения уравнений высших степеней является способ разложения на множители многочлена, стоящего в левой части уравнения. Вычисление коэффициентов многочлена и остатка записывается в виде таблицы, которая называется схемой Горнера.

Схема Горнера – это алгоритм деления многочленов, записанный для частного случая, когда частное равно двучлену x–a .

Горнер Уильям Джордж (1786 - 1837), английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен х - а (схема Горнера).

Вывод общей формулы для схемы Горнера.

Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r

Запишем это равенство подробно:

f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +...+ q n-2 x + q n-1)+r

Приравняем коэффициенты при одинаковых степенях:

x n: f 0 = q 0 => q 0 = f 0
x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0
x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1
... ...
x 0: f n = q n - c q n-1 => q n = f n + c q n-1.

Демонстрация схемы Горнера на примере.

Задание 1. С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x 2 + 8 на двучлен x-2.

1 -5 0 8
2 1 2*1+(-5)=-3 2*(-3)+0=-6 2*(-6)+8=-4

f(x) = x 3 - 5x 2 + 8 =(x-2)(x 2 -3x-6)-4, где g(x)= (x 2 -3x-6), r = -4 остаток.

Разложение многочлена по степеням двучлена.

Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2).

В результате должны получить разложение f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12

Схему Горнера часто используют при решении уравнений третьей, четвертой и выших степеней, когда удобно разложить многочлен на двучлен x-a. Число a называют корнем многочлена F n (x) = f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n , если при x=a значение многочлена F n (x) равно нулю: F n (a)=0, т.е. если многочлен делится нацело на двучлен x-a.

Например, число 2 является корнем многочлена F 3 (x)=3x 3 -2x-20, так как F 3 (2)=0. это означает. Что разложение этого многочлена на множители содержит множитель x-2.

F 3 (x)=3x 3 -2x-20=(x-2)(3x 2 +6x+10).

Любой многочлен F n (x) степени n 1 может иметь не более n действительных корней.

Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Если старший коэффициент уравнения равен 1, то все рациональные корни уравнения, если они существуют, целые.

Закрепление изученного материала.

Для закрепления нового материала учащимся предлагается выполнить номера из учебника 2.41 и 2.42 (стр. 65).

(2 ученика решают у доски, а остальные, решив, в тетради задания сверяются с ответами на доске).

Подведение итогов.

Поняв структуру и принцип действия схемы Горнера, ее можно использовать и на уроках информатики, когда рассматривается вопрос о переводе целых чисел из десятичной системы счисления в двоичную и обратно. В основе перевода из одной системы счисления в другую лежит следующая общая теорема

Теорема. Для перевода целого числа Ap из p -ичной системы счисления в систему счисления с основанием d необходимо Ap последовательно делить с остатком на число d , записанное в той же p -ичной системе, до тех пор, пока полученное частное не станет равным нулю. Остатки от деления при этом будут являться d -ичными цифрами числа Ad , начиная от младшего разряда к старшему. Все действия необходимо проводить в p -ичной системе счисления. Для человека данное правило удобно лишь при p = 10, т.е. при переводе из десятичной системы. Что касается компьютера, то ему, напротив, “удобнее” производить вычисления в двоичной системе. Поэтому для перевода “2 в 10” используется последовательное деление на десять в двоичной системе, а “10 в 2” - сложение степеней десятки. Для оптимизации вычислений процедуры “10 в 2” компьютер использует экономную вычислительную схему Горнера.

Домашнее задание. Предлагается выполнить два задание.

1-е. Используя схему Горнера разделить многочлен f(x)=2x 5 -x 4 -3x 3 +x-3 на двучлен (x-3).

2-е. Найти целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6.(учитывая, что любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена)

Литература.

  1. Курош А.Г. “Курс высшей алгебры”.
  2. Никольский С.М, Потапов М.К. и др. 10 класс “Алгебра и начала математического анализа”.
  3. http://inf.1september.ru/article.php?ID=200600907.

Схема Горнера - способ деления многочлена

$$P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$$

на бином $x-a$. Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена. Первым элементом второй строки будет число $a$, взятое из бинома $x-a$:

После деления многочлена n-ой степени на бином $x-a$, получим многочлен, степень которого на единицу меньше исходного, т.е. равна $n-1$. Непосредственное применение схемы Горнера проще всего показать на примерах.

Пример №1

Разделить $5x^4+5x^3+x^2-11$ на $x-1$, используя схему Горнера.

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена $5x^4+5x^3+x^2-11$, расположенные по убыванию степеней переменной $x$. Заметьте, что данный многочлен не содержит $x$ в первой степени, т.е. коэффициент перед $x$ в первой степени равен 0. Так как мы делим на $x-1$, то во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число $5$, просто перенеся его из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу: $1\cdot 5+5=10$:

Аналогично заполним и четвертую ячейку второй строки: $1\cdot 10+1=11$:

Для пятой ячейки получим: $1\cdot 11+0=11$:

И, наконец, для последней, шестой ячейки, имеем: $1\cdot 11+(-11)=0$:

Задача решена, осталось только записать ответ:

Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления $5x^4+5x^3+x^2-11$ на $x-1$. Естественно, что так как степень исходного многочлена $5x^4+5x^3+x^2-11$ равнялась четырём, то степень полученного многочлена $5x^3+10x^2+11x+11$ на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остаток от деления многочлена $5x^4+5x^3+x^2-11$ на $x-1$. В нашем случае остаток равен нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю.

Можно сформулировать вывод и в такой форме: так как значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю, то единица является корнем многочлена $5x^4+5x^3+x^2-11$.

Пример №2

Разделить многочлен $x^4+3x^3+4x^2-5x-47$ на $x+3$ по схеме Горнера.

Сразу оговорим, что выражение $x+3$ нужно представить в форме $x-(-3)$. В схеме Горнера будет учавствовать именно $-3$. Так как степень исходного многочлена $x^4+3x^3+4x^2-5x-47$ равна четырём, то в результате деления получим многочлен третьей степени:

Полученный результат означает, что

$$x^4+3x^3+4x^2-5x-47=(x+3)(x^3+0\cdot x^2 +4x-17)+4=(x+3)(x^3+4x-17)+4$$

В этой ситуации остаток от деления $x^4+3x^3+4x^2-5x-47$ на $x+3$ равна $4$. Или, что то самое, значение многочлена $x^4+3x^3+4x^2-5x-47$ при $x=-3$ равно $4$. Кстати, это несложно перепроверить непосредственной подстановкой $x=-3$ в заданный многочлен:

$$x^4+3x^3+4x^2-5x-47=(-3)^4+3 \cdot (-3)^3-5 \cdot (-3)-47=4.$$

Т.е. схему Горнера можно использовать, если необходимо найти значение многочлена при заданном значении переменной. Если наша цель - найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, - до тех пор, пока мы не исчерпаем все корни, как рассмотрено в примере №3.

Пример №3

Найти все целочисленные корни многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$, используя схему Горнера.

Коэффициенты рассматриваемого многочлена есть целые числа, а коэффициент перед старшей степенью переменной (т.е. перед $x^6$) равен единице. В этом случае целочисленные корни многочлена нужно искать среди делителей свободного члена, т.е. среди делителей числа 45. Для заданного многочлена такими корнями могут быть числа $45; \; 15; \; 9; \; 5; \; 3; \; 1$ и $-45; \; -15; \; -9; \; -5; \; -3; \; -1$. Проверим, к примеру, число $1$:

Как видите, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=1$ равно $192$ (последнее число в второй строке), а не $0$, посему единица не является корнем данного многочлена. Так как проверка для единицы окончилась неудачей, проверим значение $x=-1$. Новую таблицу для этого составлять не будем, а продолжим использование табл. №1, дописав в нее новую (третью) строку. Вторую строку, в которой проверялось значение $1$, выделим красным цветом и в дальнейших рассуждениях использовать её не будем.

Можно, конечно, просто переписать таблицу заново, но при заполнении вручную это займет немало времени. Тем более, что чисел, проверка которых окончится неудачей, может быть несколько, и каждый раз записывать новую таблицу затруднительно. При вычислении «на бумаге» красные строки можно просто вычёркивать.

Итак, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=-1$ равно нулю, т.е. число $-1$ есть корень этого многочлена. После деления многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ на бином $x-(-1)=x+1$ получим многочлен $x^5+x^4-22x^3+2x^2+69x+45$, коэффициенты которого взяты из третьей строки табл. №2 (см. пример №1). Результат вычислений можно также представить в такой форме:

\begin{equation}x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^3+2x^2+69x+45) \end{equation}

Продолжим поиск целочисленных корней. Теперь уже нужно искать корни многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Опять-таки, целочисленные корни этого многочлена ищут среди делителей его свободного члена, - числа $45$. Попробуем ещё раз проверить число $-1$. Новую таблицу составлять не будем, а продолжим использование предыдущей табл. №2, т.е. допишем в нее еще одну строку:

Итак, число $-1$ является корнем многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Этот результат можно записать так:

\begin{equation}x^5+x^4-22x^3+2x^2+69x+45=(x+1)(x^4-22x^2+24x+45) \end{equation}

Учитывая равенство (2), равенство (1) можно переписать в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^2+2x^2+69x+45)=\\ & =(x+1)(x+1)(x^4-22x^2+24x+45)=(x+1)^2(x^4-22x^2+24x+45)\end{aligned}\end{equation}

Теперь уже нужно искать корни многочлена $x^4-22x^2+24x+45$, - естественно, среди делителей его свободного члена (числа $45$). Проверим еще раз число $-1$:

Число $-1$ является корнем многочлена $x^4-22x^2+24x+45$. Этот результат можно записать так:

\begin{equation}x^4-22x^2+24x+45=(x+1)(x^3-x^2-21x+45) \end{equation}

С учетом равенства (4), равенство (3) перепишем в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)^2(x^4-22x^3+24x+45)= \\ & =(x+1)^2(x+1)(x^3-x^2-21x+45)=(x+1)^3(x^3-x^2-21x+45)\end{aligned}\end{equation}

Теперь ищем корни многочлена $x^3-x^2-21x+45$. Проверим еще раз число $-1$:

Проверка окончилась неудачей. Выделим шестую строку красным цветом и попробуем проверить иное число, например, число $3$:

В остатке ноль, посему число $3$ - корень рассматриваемого многочлена. Итак, $x^3-x^2-21x+45=(x-3)(x^2+2x-15)$. Теперь равенство (5) можно переписать так.