Чему равен синус в треугольнике. Cинус, косинус, тангенс и котангенс - все, что нужно знать на ЕГЭ по математике (2020)

Лекция: Синус, косинус, тангенс, котангенс произвольного угла

Синус, косинус произвольного угла


Чтобы понять, что такое тригонометрические функции, обратимся к окружности с единичным радиусом. Данная окружность имеет центр в начале координат на координатной плоскости. Для определения заданных функций будем использовать радиус-вектор ОР , который начинается в центре окружности, а точка Р является точкой окружности. Данный радиус-вектор образует угол альфа с осью ОХ . Так как окружность имеет радиус, равный единице, то ОР = R = 1 .

Если с точки Р опустить перпендикуляр на ось ОХ , то получим прямоугольный треугольник с гипотенузой, равной единице.


Если радиус-вектор двигается по часовой стрелке, то данное направление называется отрицательным , если же он двигается против движения часовой стрелки - положительным .


Синусом угла ОР , является ордината точки Р вектора на окружности.

То есть, для получения значения синуса данного угла альфа необходимо определиться с координатой У на плоскости.

Как данное значение было получено? Так как мы знаем, что синус произвольного угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе, получим, что

А так как R = 1 , то sin(α) = y 0 .


В единичной окружности значение ординаты не может быть меньше -1 и больше 1, значит,

Синус принимает положительное значение в первой и второй четверти единичной окружности, а в третьей и четвертой - отрицательное.

Косинусом угла данной окружности, образованного радиусом-вектором ОР , является абсцисса точки Р вектора на окружности.

То есть, для получения значения косинуса данного угла альфа необходимо определиться с координатой Х на плоскости.


Косинус произвольного угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе, получим, что


А так как R = 1 , то cos(α) = x 0 .

В единичной окружности значение абсциссы не может быть меньше -1 и больше 1, значит,

Косинус принимает положительное значение в первой и четвертой четверти единичной окружности, а во второй и в третьей - отрицательное.

Тангенсом произвольного угла считается отношение синуса к косинусу.

Если рассматривать прямоугольный треугольник, то это отношение противолежащего катета к прилежащему. Если же речь идет о единичной окружности, то это отношение ординаты к абсциссе.

Судя по данным отношениям, можно понять, что тангенс не может существовать, если значение абсциссы равно нулю, то есть при угле в 90 градусов. Все остальные значения тангенс принимать может.

Тангенс имеет положительное значение в первой и третьей четверти единичной окружности, а во второй и четвертой является отрицательным.


В этой статье мы покажем, как даются определения синуса, косинуса, тангенса и котангенса угла и числа в тригонометрии . Здесь же мы поговорим об обозначениях, приведем примеры записей, дадим графические иллюстрации. В заключение проведем параллель между определениями синуса, косинуса, тангенса и котангенса в тригонометрии и геометрии.

Навигация по странице.

Определение синуса, косинуса, тангенса и котангенса

Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.

Острого угла в прямоугольном треугольнике

Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.

Определение.

Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.

Определение.

Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.

Определение.

Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.

Определение.

Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.

Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin , cos , tg и ctg соответственно.

Например, если АВС – прямоугольный треугольник с прямым углом С , то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB , то есть, sin∠A=BC/AB .

Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3 , а гипотенуза AB равна 7 , то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7 .

Угла поворота

В тригонометрии на угол начинают смотреть более широко - вводят понятие угла поворота . Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞ .

В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A 1 , в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности .

Определение.

Синус угла поворота α - это ордината точки A 1 , то есть, sinα=y .

Определение.

Косинусом угла поворота α называют абсциссу точки A 1 , то есть, cosα=x .

Определение.

Тангенс угла поворота α - это отношение ординаты точки A 1 к ее абсциссе, то есть, tgα=y/x .

Определение.

Котангенсом угла поворота α называют отношение абсциссы точки A 1 к ее ординате, то есть, ctgα=x/y .

Синус и косинус определены для любого угла α , так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α . А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α , при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1) , а это имеет место при углах 90°+180°·k , k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α , при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0) , а это имеет место для углов 180°·k , k∈Z (π·k рад).

Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k , k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k , k∈Z (π·k рад).

В определениях фигурируют уже известные нам обозначения sin , cos , tg и ctg , они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot , отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30° , записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α . Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π .

В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.

Также скажем, что определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике согласуются с только что данными определениями синуса, косинуса, тангенса и котангенса угла поворота величиной от 0 до 90 градусов. Это мы обоснуем .

Числа

Определение.

Синусом, косинусом, тангенсом и котангенсом числа t называют число, равное синусу, косинусу, тангенсу и котангенсу угла поворота в t радианов соответственно.

Например, косинус числа 8·π по определению есть число, равное косинусу угла в 8·π рад. А косинус угла в 8·π рад равен единице, поэтому, косинус числа 8·π равен 1 .

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Он состоит в том, что каждому действительному числу t ставится в соответствие точка единичной окружности с центром в начале прямоугольной системы координат, и синус, косинус, тангенс и котангенс определяются через координаты этой точки. Остановимся на этом подробнее.

Покажем, как устанавливается соответствие между действительными числами и точками окружности:

  • числу 0 ставится в соответствие начальная точка A(1, 0) ;
  • положительному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении против часовой стрелки и пройдем путь длиной t ;
  • отрицательному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении по часовой стрелке и пройдем путь длиной |t| .

Теперь переходим к определениями синуса, косинуса, тангенса и котангенса числа t . Допустим, что числу t соответствует точка окружности A 1 (x, y) (например, числу &pi/2; отвечает точка A 1 (0, 1) ).

Определение.

Синусом числа t называют ординату точки единичной окружности, соответствующей числу t , то есть, sint=y .

Определение.

Косинусом числа t называют абсциссу точки единичной окружности, отвечающей числу t , то есть, cost=x .

Определение.

Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t , то есть, tgt=y/x . В другой равносильной формулировке тангенс числа t – это отношение синуса этого числа к косинусу, то есть, tgt=sint/cost .

Определение.

Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t , то есть, ctgt=x/y . Другая формулировка такова: тангенс числа t – это отношение косинуса числа t к синусу числа t : ctgt=cost/sint .

Здесь отметим, что только что данные определения согласуются с определением, данным в начале этого пункта. Действительно, точка единичной окружности, соответствующая числу t , совпадает с точкой, полученной в результате поворота начальной точки на угол в t радианов.

Еще стоит прояснить такой момент. Допустим, перед нами запись sin3 . Как понять, о синусе числа 3 или о синусе угла поворота в 3 радиана идет речь? Обычно это ясно из контекста, в противном случае это скорее всего не имеет принципиального значения.

Тригонометрические функции углового и числового аргумента

Согласно данным в предыдущем пункте определениям, каждому углу поворота α соответствуют вполне определенное значение sinα , как и значение cosα . Кроме того, всем углам поворота, отличным от 90°+180°·k , k∈Z (π/2+π·k рад) отвечают значения tgα , а отличным от 180°·k , k∈Z (π·k рад) – значения ctgα . Поэтому sinα , cosα , tgα и ctgα - это функции угла α . Другими словами – это функции углового аргумента.

Аналогично можно говорить и про функции синус, косинус, тангенс и котангенс числового аргумента. Действительно, каждому действительному числу t отвечает вполне определенное значение sint , как и cost . Кроме того, всем числам, отличным от π/2+π·k , k∈Z соответствуют значения tgt , а числам π·k , k∈Z - значения ctgt .

Функции синус, косинус, тангенс и котангенс называют основными тригонометрическими функциями .

Из контекста обычно понятно, с тригонометрическими функциями углового аргумента или числового аргумента мы имеем дело. В противном случае мы можем считать независимую переменную как мерой угла (угловым аргументом), так и числовым аргументом.

Однако, в школе в основном изучаются числовые функции, то есть, функции, аргументы которых, как и соответствующие им значения функции, являются числами. Поэтому, если речь идет именно о функциях, то целесообразно считать тригонометрические функции функциями числовых аргументов.

Связь определений из геометрии и тригонометрии

Если рассматривать угол поворота α величиной от 0 до 90 градусов, то данные в контексте тригонометрии определения синуса, косинуса, тангенса и котангенса угла поворота полностью согласуются с определениями синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике, которые даются в курсе геометрии. Обоснуем это.

Изобразим в прямоугольной декартовой системе координат Oxy единичную окружность. Отметим начальную точку A(1, 0) . Повернем ее на угол α величиной от 0 до 90 градусов, получим точку A 1 (x, y) . Опустим из точки А 1 на ось Ox перпендикуляр A 1 H .

Легко видеть, что в прямоугольном треугольнике угол A 1 OH равен углу поворота α , длина прилежащего к этому углу катета OH равна абсциссе точки A 1 , то есть, |OH|=x , длина противолежащего к углу катета A 1 H равна ординате точки A 1 , то есть, |A 1 H|=y , а длина гипотенузы OA 1 равна единице, так как она является радиусом единичной окружности. Тогда по определению из геометрии синус острого угла α в прямоугольном треугольнике A 1 OH равен отношению противолежащего катета к гипотенузе, то есть, sinα=|A 1 H|/|OA 1 |=y/1=y . А по определению из тригонометрии синус угла поворота α равен ординате точки A 1 , то есть, sinα=y . Отсюда видно, что определение синуса острого угла в прямоугольном треугольнике эквивалентно определению синуса угла поворота α при α от 0 до 90 градусов.

Аналогично можно показать, что и определения косинуса, тангенса и котангенса острого угла α согласуются с определениями косинуса, тангенса и котангенса угла поворота α .

Список литературы.

  1. Геометрия. 7-9 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. - 20-е изд. М.: Просвещение, 2010. - 384 с.: ил. - ISBN 978-5-09-023915-8.
  2. Погорелов А. В. Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ А. В. Погорелов. - 2-е изд - М.: Просвещение, 2001. - 224 с.: ил. - ISBN 5-09-010803-X.
  3. Алгебра и элементарные функции : Учебное пособие для учащихся 9 класса средней школы / Е. С. Кочетков, Е. С. Кочеткова; Под редакцией доктора физико-математических наук О. Н. Головина.- 4-е изд. М.: Просвещение, 1969.
  4. Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  5. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  6. Мордкович А. Г. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразовательных учреждений (профильный уровень)/ А. Г. Мордкович, П. В. Семенов. - 4-е изд., доп. - М.: Мнемозина, 2007. - 424 с.: ил. ISBN 978-5-346-00792-0.
  7. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни /[Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - И.: Просвещение, 2010.- 368 с.: ил.- ISBN 978-5-09-022771-1.
  8. Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  9. Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Косинус – одна из основных тригонометрических функций. Косинус ом острого угла в прямоугольном треугольнике именуется отношение прилежащего катета к гипотенузе. Определение косинуса привязано к прямоугольному треугольнику, но нередко угол, косинус которого нужно определить, в прямоугольном треугольнике не размещен. Как обнаружить значение косинуса всякого угла ?

Инструкция

1. угла в прямоугольном треугольнике, нужно воспользоваться определением косинуса и обнаружить отношение прилежащего катета к гипотенузе:cos? = a/c, где а – длина катета, с – длина гипотенузы.

2. Если нужно обнаружить косинус угла в произвольном треугольнике, нужно воспользоваться теоремой косинусов:если угол острый: cos? = (a2 + b2 – c2)/(2ab);если угол тупой: cos? = (с2 – a2 – b2)/(2ab), где а, b – длины сторон прилежащих к углу, с – длина стороны противолежащей углу.

3. Если нужно обнаружить косинус угла в произвольной геометрической фигуре, нужно определить величину угла в градусах либо радианах, а косинус угла обнаружить по его величине с поддержкой инженерного калькулятора, таблиц Брадиса либо всякого иного математического приложения.

Косинус – это базовая тригонометрическая функция угла. Знание определять косинус сгодится в векторной алгебре при определении проекций векторов на разные оси.

Инструкция

1. Косинус ом угла называют отношение прилежащего к углу катета к гипотенузе. Значит, в прямоугольном треугольнике ABC (ABC – прямой угол) косинус угла BAC равен отношению AB к AC. Для угла ACB: cos ACB = BC/AC.

2. Но не неизменно угол принадлежит треугольнику, помимо того бывают тупые углы, которые заведомо не могут быть в составе прямоугольного треугольника. Разглядим случай, когда угол задан лучами. Дабы в этом случае вычислить косинус угла, поступают дальнейшим образом. К углу привязывают систему координат, предисловие координат считается от вершины угла, ось X идет по одной стороне угла, ось Y строится перпендикулярно оси X. После этого строят окружность единичного радиуса с центром в вершине угла. Вторая сторона угла пересекает окружность в точке A. Опустите перпендикуляр из точки A на ось X, обозначьте точку пересечения перпендикуляра с осью Ax. Тогда получится прямоугольный треугольник AAxO, и косинус угла равен AAx/AO. От того что окружность единичного радиуса, то AO = 1 и косинус угла равен примитивно AAx.

3. В случае тупого угла проводят все те же самые построения. Косинус тупого угла негативный, но он также равен Ax.

Видео по теме

Обратите внимание!
Косинусы некоторых углов представлены в таблицах Брадиса.

Такие представления как синус, косинус, тангенс вряд ли кому-то зачастую встречаются в повседневной жизни. Впрочем, если вы сели решать математические задачки с сыном-старшеклассником, хорошо было бы припомнить, что же это за представления, и как обнаружить, скажем, косинус.

Инструкция

Видео по теме

Частенько в геометрических (тригонометрических) задачах требуется обнаружить косинус угла в треугольнике , так как косинус угла разрешает однозначно определить величину самого угла.

Инструкция

1. Дабы обнаружить косинус угла в треугольнике , длины сторон которого знамениты, дозволено воспользоваться теоремой косинус ов. Согласно этой теореме, квадрат длины стороны произвольного треугольника равняется сумме квадратов 2-х его других сторон без удвоенного произведения длин этих сторон на косинус угла между ними:а?=b?+c?-2*b*c*соs?, где:а, b, с – стороны треугольника (вернее их длины),? – угол, противоположный стороне а (его величина).Из приведенного равенства легко находится соs?:соs?=(b?+c?-а?)/(2*b*c)Пример 1.Имеется треугольник со сторонами а, b, с, равными 3, 4, 5 мм, соответственно.Обнаружить косинус угла, заключенного между крупными сторонами.Решение:По условию задачи имеем:а=3,b=4,с=5.Обозначим противоположный стороне а угол через?, тогда, согласно выведенной выше формуле, имеем:соs?=(b?+c?-а?)/(2*b*c)=(4?+5?-3?)/(2*4*5)=(16+25-9)/40=32/40=0,8Ответ: 0,8.

2. Если треугольник прямоугольный, то для нахождения косинус а угла довольно знать длины каждого 2-х всяких сторон (косинус прямого угла равен 0).Пускай имеется прямоугольный треугольник со сторонами а, b, с, где с – гипотенуза.Разглядим все варианты:Пример 2.Обнаружить соs?, если знамениты длины сторон а и b (катеты треугольника)Воспользуемся добавочно теоремой Пифагора:c?=b?+а?,с=v(b?+а?)соs?=(b?+c?-а?)/(2*b*c)=(b?+b?+а?-а?)/(2*b*v(b?+а?))=(2*b?)/(2*b*v(b?+а?))=b/v(b?+а?)Дабы проверить правильность полученной формулы, подставим в нее значения из примера 1, т.е.а=3,b=4.Проделав элементарные вычисления, получаем:соs?=0,8.

3. Подобно находится косинус в прямоугольном треугольнике в остальных случаях:Пример 3.Знамениты а и с (гипотенуза и противолежащий катет), обнаружить соs?b?=с?-а?,b=v(c?-а?)соs?=(b?+c?-а?)/(2*b*c)=(с?-а?+с?-а?)/(2*с*v(с?-а?))=(2*с?-2*а?)/(2*с*v(с?-а?))=v(с?-а?)/с.Подставляя значения а=3 и с=5 из первого примера, получаем:соs?=0,8.

4. Пример 4.Вестимы b и с (гипотенуза и прилежащий катет).Обнаружить соs?Произведя схожие (показанные в примерах 2 и 3 реформирования), получим, что в этом случае косинус в треугольнике вычисляется по дюже легкой формуле:соs?=b/с.Простота выведенной формулы объясняется элементарно: реально, прилежащий к углу? катет является проекцией гипотенузы, следственно его длина равна длине гипотенузы, умноженной на соs?.Подставляя значения b=4 и с=5 из первого примера, получим:соs?=0,8Значит, все наши формулы правильны.

Совет 5: Как обнаружить острый угол в прямоугольном треугольнике

Прямоугольный треугольник, видимо, – одна из самых знаменитых, с исторической точки зрения, геометрических фигур. Пифагоровым “штанам” конкуренцию может составить лишь “Эврика!” Архимеда.

Вам понадобится

  • – чертеж треугольника;
  • – линейка;
  • – транспортир.

Инструкция

1. Как водится, вершины углов треугольника обозначаются заглавными латинскими буквами (A, B, C), а противоположные им стороны маленькими латинскими буквами (a, b, c) либо по наименованиям вершин треугольника, образующих эту сторону (AC, BC, AB).

2. Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) неизменно будет 90 градусов, а остальные острыми, т.е. поменьше 90 градусов весь. Дабы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с поддержкой линейки стороны треугольника и определите крупнейшую. Она именуется гипотенуза (AB) и располагается наоборот прямого угла (C). Остальные две стороны образуют прямой угол и именуются катетами (AC, BC).

3. Когда определили, какой угол является острым, вы можете либо измерить величину угла при помощи транспортира, либо рассчитать с поддержкой математических формул.

4. Дабы определить величину угла с подмогой транспортира, совместите его вершину (обозначим ее буквой А) с особой отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Подметьте на полукруглой части транспортира точку, через которую проходит гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла необходимо выбирать меньшую, для тупого – крупную.

6. Полученное значение обнаружьте в справочных таблицах Брадиса и определите какому углу соответствует полученное числовое значение. Этим способом пользовались наши бабушки.

7. В наше время довольно взять калькулятор с функцией вычисления тригонометрических формул. Скажем, встроенный калькулятор Windows. Запустите приложение “Калькулятор”, в пункте меню “Вид” предпочтете пункт “Инженерный”. Вычислите синус желанного угла, скажем, sin (A) = BC/AB = 2/4 = 0.5

8. Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, после этого кликните по кнопке расчета функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится дальнейшая надпись: asind (0.5) = 30. Т.е. значение желанного угла – 30 градусов.

Теорема косинусов в математике почаще каждого применяется в том случае, когда нужно обнаружить третью сторону по углу и двум сторонам. Впрочем, изредка условие задачи поставлено напротив: требуется обнаружить угол при заданных 3 сторонах.

Инструкция

1. Представьте себе, что дан треугольник, у которого вестимы длины 2-х сторон и значение одного угла. Все углы этого треугольника не равны друг другу, а его стороны также являются разными по величине. Угол? лежит наоборот стороны треугольника, обозначенной, как AB, которая является основанием этой фигуры. Через данный угол, а также через оставшиеся стороны AC и BC дозволено обнаружить ту сторону треугольника, которая неведома, по теореме косинусов, выведя на ее основе представленную ниже формулу:a^2=b^2+c^2-2bc*cos?, где a=BC, b=AB, c=ACТеорему косинусов напротив называют обобщенной теоремой Пифагора.

2. Сейчас представьте себе, что даны все три стороны фигуры, но при этом ее угол? неведом. Зная, что формула имеет вид a^2=b^2+c^2-2bc*cos?, преобразуйте данное выражение таким образом, дабы желанной величиной стал угол?: b^2+c^2=2bc*cos?+a^2.После этого приведите показанное выше уравнение к несколько другому виду: b^2+c^2-a^2=2bc*cos?.После этого данное выражение следует преобразовать в представленное ниже: cos?=?b^2+c^2-a^2/2bc.Осталось подставить в формулу числа и осуществить вычисления.

3. Дабы обнаружить косинус угла треугольника, обозначенного как?, его нужно выразить через обратную тригонометрическую функцию, называемую арккосинусом. Арккосинусом числа m именуется такое значение угла?, для которого косинус угла? равен m. Функция y=arccos m является убывающей. Представьте себе, скажем, что косинус угла? равен одной 2-й. Тогда угол? может быть определен через арккосинус дальнейшим образом:? = arccos, m = arccos 1/2 = 60°, где m = 1/2.Аналогичным образом дозволено обнаружить и остальные углы треугольника при 2-х других неведомых его сторонах.

4. В случае, если углы представлены в радианах, переведите их в градусы, применяя следующее соотношение:? радиан = 180 градусов.Помните, что подавляющее множество инженерных калькуляторов снабжено вероятностью переключения единиц измерения углов.

Синус и косинус – две тригонометрические функции, которые называют «прямыми». Именно их доводится вычислять почаще других и для решения этой задачи сегодня всякий из нас имеет большой выбор вариантов. Ниже приведено несколько особенно примитивных методов.

Инструкция

1. Используйте транспортир, карандаш и лист бумаги, если других средств вычисления нет под рукой. Одно из определений косинуса дается через острые углы в прямоугольном треугольнике – его значение равно соотношению между длиной катета, лежащего наоборот этого угла и длиной гипотенузы. Нарисуйте треугольник, в котором один из углов будет прямым (90°), а иной равен углу, косинус которого требуется вычислить. Длина сторон при этом не имеет значения – нарисуйте их такими, которые вам комфортнее измерять. Измерьте длину надобного катета и гипотенузы и поделите первое на второе любым комфортным методом.

2. Воспользуйтесь вероятностью определять значения тригонометрических функций с поддержкой калькулятора, встроенного в поисковую систему Nigma, если у вас есть доступ в интернет. Скажем, если требуется вычислить косинус угла в 20°, то загрузив основную страницу обслуживания http://nigma.ru наберите в поле поискового запроса «косинус 20 градусов» и нажмите кнопку «Обнаружить!». Дозволено слово «градусов» опустить, а слово «косинус» заменить на cos – в любом случае поисковик покажет итог с точностью до 15 знаков позже запятой (0,939692620785908).

3. Откройте стандартную программу-калькулятор, устанавливаемую совместно с операционной системой Windows, если нет доступа к интернету. Сделать это дозволено, скажем, единовременно нажав клавиши win и r, после этого введя команду calc и щелкнув по кнопке OK. Для вычисления тригонометрических функций тут предуготовлен интерфейс, с наименованием «инженерный» либо «ученый» (в зависимости от версии ОС) – выберите необходимый пункт в разделе «Вид» меню калькулятора. Позже этого введите величину угла в градусах и щелкните по кнопке cos в интерфейсе программы.

Видео по теме

Совет 8: Как определить углы в прямоугольном треугольнике

Прямоугольный треугольник характеризуется определенными соотношениями между углами и сторонами. Зная значения одних из них, дозволено вычислять другие. Для этого применяются формулы, основанные, в свою очередь, на аксиомах и теоремах геометрии.

Инструкция

1. Из самого наименования прямоугольного треугольника ясно, что один из его углов является прямым. Самостоятельно от того, является прямоугольный треугольник равнобедренным либо нет, в нем неизменно имеется один угол, равный 90 градусам. Если дан прямоугольный треугольник, являющийся единовременно и равнобедренным, то, исходя из того, что в фигуре имеется прямой угол, обнаружьте два угла при его основании. Эти углы равны между собой, следственно всякий из них имеет значение, равное:?=180°- 90°/2=45°

2. Помимо рассмотренного выше, допустим также иной случай, когда треугольник является прямоугольным, но не является равнобедренным. Во многих задачах угол треугольника равен 30°, а иной 60°, от того что сумма всех углов в треугольнике должна быть равной 180°. Если дана гипотенуза прямоугольного треугольника и его катет, то угол дозволено обнаружить из соответствия этих 2-х сторон:sin ?=a/c, где a – катет, противолежащий к гипотенузе треугольника, с – гипотенуза треугольникаСоответственно, ?=arcsin(a/c)Также угол дозволено обнаружить и по формуле нахождения косинуса:cos ?=b/c, где b – прилежащий катет к гипотенузе треугольника

3. Если вестимы только два катета, то угол? дозволено обнаружить по формуле тангенса. Тангенс этого угла равен отношению противолежащего катета к прилежащему:tg ?=a/bИз этого следует, что?=arctg(a/b)Когда даны прямой угол и один из углов, обнаруженных вышеуказанным методом, 2-й находится дальнейшим образом:?=180°-(90°+?)

Словом «косинус» называют одну из тригонометрических функций, которая при написании обозначается как cos. Особенно зачастую иметь с ней дело доводится при решении задач на нахождение параметров верных фигур в геометрии. В таких задачах величины углов в вершинах многоугольников обозначаются, как водится, прописными буквами греческого алфавита. Если речь при этом идет о прямоугольном треугольнике, то по одной этой букве изредка дозволено узнать, тот, что из углов имеется в виду.

Инструкция

1. Если величина угла, обозначенная буквой?, знаменита из условий задачи, то для нахождения значения, соответствующего косинусу альфа, дозволено воспользоваться стандартным калькулятором ОС Windows. Запускается он через основное меню операционной системы – нажмите кнопку Win, раскройте в меню раздел «Все программы», перейдите в подраздел «Типовые», а после этого в секцию «Служебные». Там и обнаружите строку «Калькулятор» – кликните ее для запуска приложения.

2. Нажмите сочетание клавиш Alt + 2, дабы переключить интерфейс приложения в «инженерный» (в иных версиях ОС – «ученый») вариант. После этого введите величину угла? и щелкните указателем мыши кнопку, обозначенную буквами cos – калькулятор произведет вычисление функции и отобразит итог.

3. Если вычислить косинус угла? необходимо в прямоугольном треугольнике, то, вероятно, это один из 2-х острых углов. При верном обозначении сторон такого треугольника гипотенузу (самую длинную сторону) обозначают буквой c, а лежащий наоборот нее прямой угол – греческой буквой?. Две другие стороны (катеты) обозначают буквами a и b, а лежащие наоборот них острые углы – ? и?. Для величин острых углов прямоугольного треугольника существуют соотношения, которые дозволят вычислять косинус, даже не зная величины самого угла.

4. Если в прямоугольном треугольнике вестимы длины сторон b (катета, прилежащего к углу?) и c (гипотенузы), то для вычисления косинуса? поделите длину этого катета на длину гипотенузы: cos(?)=b/c.

5. В произвольном треугольнике значение косинуса угла? незнакомой величины дозволено вычислить, если в условиях даны длины всех сторон. Для этого вначале возведите в квадрат длины всех сторон, потом полученные значения для 2-х сторон, прилежащих к углу? сложите, а полученное значение для противолежащей стороны отнимите от итога. После этого полученную величину поделите на удвоенное произведение длин прилегающих к углу? сторон – это и будет желанный косинус угла?: cos(?)=(b?+c?-a?)/(2*b*c). Это решение вытекает из теоремы косинусов.

Полезный совет
Математическое обозначение косинуса – cos. Значение косинуса не может быть огромнее 1 и поменьше -1.

Что такое синус, косинус, тангенс, котангенс угла поможет понять прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона \(AC \) ); катеты – это две оставшиеся стороны \(AB \) и \(BC \) (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла \(BC \) , то катет \(AB \) – это прилежащий катет, а катет \(BC \) - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике:

\[ \sin \beta =\dfrac{BC}{AC} \]

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике:

\[ \cos \beta =\dfrac{AB}{AC} \]

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике:

\[ tg\beta =\dfrac{BC}{AB} \]

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике:

\[ ctg\beta =\dfrac{AB}{BC} \]

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла \(\beta \) . По определению, из треугольника \(ABC \) : \(\cos \beta =\dfrac{AB}{AC}=\dfrac{4}{6}=\dfrac{2}{3} \) , но ведь мы можем вычислить косинус угла \(\beta \) и из треугольника \(AHI \) : \(\cos \beta =\dfrac{AH}{AI}=\dfrac{6}{9}=\dfrac{2}{3} \) . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника \(ABC \) , изображённого ниже на рисунке, найдём \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \) .

\(\begin{array}{l}\sin \ \alpha =\dfrac{4}{5}=0,8\\\cos \ \alpha =\dfrac{3}{5}=0,6\\tg\ \alpha =\dfrac{4}{3}\\ctg\ \alpha =\dfrac{3}{4}=0,75\end{array} \)

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла \(\beta \) .

Ответы: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac{4}{3} \) .

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным \(1 \) . Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси \(x \) (в нашем примере, это радиус \(AB \) ).

Каждой точке окружности соответствуют два числа: координата по оси \(x \) и координата по оси \(y \) . А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник \(ACG \) . Он прямоугольный, так как \(CG \) является перпендикуляром к оси \(x \) .

Чему равен \(\cos \ \alpha \) из треугольника \(ACG \) ? Всё верно \(\cos \ \alpha =\dfrac{AG}{AC} \) . Кроме того, нам ведь известно, что \(AC \) – это радиус единичной окружности, а значит, \(AC=1 \) . Подставим это значение в нашу формулу для косинуса. Вот что получается:

\(\cos \ \alpha =\dfrac{AG}{AC}=\dfrac{AG}{1}=AG \) .

А чему равен \(\sin \ \alpha \) из треугольника \(ACG \) ? Ну конечно, \(\sin \alpha =\dfrac{CG}{AC} \) ! Подставим значение радиуса \(AC \) в эту формулу и получим:

\(\sin \alpha =\dfrac{CG}{AC}=\dfrac{CG}{1}=CG \)

Так, а можешь сказать, какие координаты имеет точка \(C \) , принадлежащая окружности? Ну что, никак? А если сообразить, что \(\cos \ \alpha \) и \(\sin \alpha \) - это просто числа? Какой координате соответствует \(\cos \alpha \) ? Ну, конечно, координате \(x \) ! А какой координате соответствует \(\sin \alpha \) ? Всё верно, координате \(y \) ! Таким образом, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \) .

А чему тогда равны \(tg \alpha \) и \(ctg \alpha \) ? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что \(tg \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{y}{x} \) , а \(ctg \alpha =\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{x}{y} \) .

А что, если угол будет больше ? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник \({{A}_{1}}{{C}_{1}}G \) : угол (как прилежащий к углу \(\beta \) ). Чему равно значение синуса, косинуса, тангенса и котангенса для угла \({{C}_{1}}{{A}_{1}}G=180{}^\circ -\beta \ \) ? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

\(\begin{array}{l}\sin \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{C}_{1}}G}{1}={{C}_{1}}G=y;\\\cos \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{A}_{1}}G}{1}={{A}_{1}}G=x;\\tg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}G}=\dfrac{y}{x};\\ctg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{C}_{1}}G}=\dfrac{x}{y}\end{array} \)

Ну вот, как видишь, значение синуса угла всё так же соответствует координате \(y \) ; значение косинуса угла – координате \(x \) ; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси \(x \) . До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке – отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет \(360{}^\circ \) или \(2\pi \) . А можно повернуть радиус-вектор на \(390{}^\circ \) или на \(-1140{}^\circ \) ? Ну конечно, можно! В первом случае, \(390{}^\circ =360{}^\circ +30{}^\circ \) , таким образом, радиус-вектор совершит один полный оборот и остановится в положении \(30{}^\circ \) или \(\dfrac{\pi }{6} \) .

Во втором случае, \(-1140{}^\circ =-360{}^\circ \cdot 3-60{}^\circ \) , то есть радиус-вектор совершит три полных оборота и остановится в положении \(-60{}^\circ \) или \(-\dfrac{\pi }{3} \) .

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на \(360{}^\circ \cdot m \) или \(2\pi \cdot m \) (где \(m \) – любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол \(\beta =-60{}^\circ \) . Это же изображение соответствует углу \(-420{}^\circ ,-780{}^\circ ,\ 300{}^\circ ,660{}^\circ \) и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой \(\beta +360{}^\circ \cdot m \) или \(\beta +2\pi \cdot m \) (где \(m \) – любое целое число)

\(\begin{array}{l}-420{}^\circ =-60+360\cdot (-1);\\-780{}^\circ =-60+360\cdot (-2);\\300{}^\circ =-60+360\cdot 1;\\660{}^\circ =-60+360\cdot 2.\end{array} \)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

\(\begin{array}{l}\sin \ 90{}^\circ =?\\\cos \ 90{}^\circ =?\\\text{tg}\ 90{}^\circ =?\\\text{ctg}\ 90{}^\circ =?\\\sin \ 180{}^\circ =\sin \ \pi =?\\\cos \ 180{}^\circ =\cos \ \pi =?\\\text{tg}\ 180{}^\circ =\text{tg}\ \pi =?\\\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =?\\\sin \ 270{}^\circ =?\\\cos \ 270{}^\circ =?\\\text{tg}\ 270{}^\circ =?\\\text{ctg}\ 270{}^\circ =?\\\sin \ 360{}^\circ =?\\\cos \ 360{}^\circ =?\\\text{tg}\ 360{}^\circ =?\\\text{ctg}\ 360{}^\circ =?\\\sin \ 450{}^\circ =?\\\cos \ 450{}^\circ =?\\\text{tg}\ 450{}^\circ =?\\\text{ctg}\ 450{}^\circ =?\end{array} \)

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

\(\begin{array}{l}\sin \alpha =y;\\cos\alpha =x;\\tg\alpha =\dfrac{y}{x};\\ctg\alpha =\dfrac{x}{y}.\end{array} \)

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в \(90{}^\circ =\dfrac{\pi }{2} \) соответствует точка с координатами \(\left(0;1 \right) \) , следовательно:

\(\sin 90{}^\circ =y=1 \) ;

\(\cos 90{}^\circ =x=0 \) ;

\(\text{tg}\ 90{}^\circ =\dfrac{y}{x}=\dfrac{1}{0}\Rightarrow \text{tg}\ 90{}^\circ \) - не существует;

\(\text{ctg}\ 90{}^\circ =\dfrac{x}{y}=\dfrac{0}{1}=0 \) .

Дальше, придерживаясь той же логики, выясняем, что углам в \(180{}^\circ ,\ 270{}^\circ ,\ 360{}^\circ ,\ 450{}^\circ (=360{}^\circ +90{}^\circ)\ \) соответствуют точки с координатами \(\left(-1;0 \right),\text{ }\left(0;-1 \right),\text{ }\left(1;0 \right),\text{ }\left(0;1 \right) \) , соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

\(\displaystyle \sin \ 180{}^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180{}^\circ =\cos \ \pi =-1 \)

\(\text{tg}\ 180{}^\circ =\text{tg}\ \pi =\dfrac{0}{-1}=0 \)

\(\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =\dfrac{-1}{0}\Rightarrow \text{ctg}\ \pi \) - не существует

\(\sin \ 270{}^\circ =-1 \)

\(\cos \ 270{}^\circ =0 \)

\(\text{tg}\ 270{}^\circ =\dfrac{-1}{0}\Rightarrow \text{tg}\ 270{}^\circ \) - не существует

\(\text{ctg}\ 270{}^\circ =\dfrac{0}{-1}=0 \)

\(\sin \ 360{}^\circ =0 \)

\(\cos \ 360{}^\circ =1 \)

\(\text{tg}\ 360{}^\circ =\dfrac{0}{1}=0 \)

\(\text{ctg}\ 360{}^\circ =\dfrac{1}{0}\Rightarrow \text{ctg}\ 2\pi \) - не существует

\(\sin \ 450{}^\circ =\sin \ \left(360{}^\circ +90{}^\circ \right)=\sin \ 90{}^\circ =1 \)

\(\cos \ 450{}^\circ =\cos \ \left(360{}^\circ +90{}^\circ \right)=\cos \ 90{}^\circ =0 \)

\(\text{tg}\ 450{}^\circ =\text{tg}\ \left(360{}^\circ +90{}^\circ \right)=\text{tg}\ 90{}^\circ =\dfrac{1}{0}\Rightarrow \text{tg}\ 450{}^\circ \) - не существует

\(\text{ctg}\ 450{}^\circ =\text{ctg}\left(360{}^\circ +90{}^\circ \right)=\text{ctg}\ 90{}^\circ =\dfrac{0}{1}=0 \) .

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

\(\left. \begin{array}{l}\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac{y}{x};\\ctg \alpha =\dfrac{x}{y}.\end{array} \right\}\ \text{Надо запомнить или уметь выводить!!!} \)

А вот значения тригонометрических функций углов в и \(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4} \) , приведённых ниже в таблице, необходимо запомнить:

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений:

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (\(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4},\ 60{}^\circ =\dfrac{\pi }{3} \) ), а также значение тангенса угла в \(30{}^\circ \) . Зная эти \(4 \) значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

\(\begin{array}{l}\sin 30{}^\circ =\cos \ 60{}^\circ =\dfrac{1}{2}\ \ \\\sin 45{}^\circ =\cos \ 45{}^\circ =\dfrac{\sqrt{2}}{2}\\\sin 60{}^\circ =\cos \ 30{}^\circ =\dfrac{\sqrt{3}}{2}\ \end{array} \)

\(\text{tg}\ 30{}^\circ \ =\dfrac{1}{\sqrt{3}} \) , зная это можно восстановить значения для \(\text{tg}\ 45{}^\circ , \text{tg}\ 60{}^\circ \) . Числитель «\(1 \) » будет соответствовать \(\text{tg}\ 45{}^\circ \ \) , а знаменатель «\(\sqrt{\text{3}} \) » соответствует \(\text{tg}\ 60{}^\circ \ \) . Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего \(4 \) значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота? Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки. Вот, к примеру, перед нами такая окружность:

Нам дано, что точка \(K({{x}_{0}};{{y}_{0}})=K(3;2) \) - центр окружности. Радиус окружности равен \(1,5 \) . Необходимо найти координаты точки \(P \) , полученной поворотом точки \(O \) на \(\delta \) градусов.

Как видно из рисунка, координате \(x \) точки \(P \) соответствует длина отрезка \(TP=UQ=UK+KQ \) . Длина отрезка \(UK \) соответствует координате \(x \) центра окружности, то есть равна \(3 \) . Длину отрезка \(KQ \) можно выразить, используя определение косинуса:

\(\cos \ \delta =\dfrac{KQ}{KP}=\dfrac{KQ}{r}\Rightarrow KQ=r\cdot \cos \ \delta \) .

Тогда имеем, что для точки \(P \) координата \(x={{x}_{0}}+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \) .

По той же логике находим значение координаты y для точки \(P \) . Таким образом,

\(y={{y}_{0}}+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \) .

Итак, в общем виде координаты точек определяются по формулам:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta \end{array} \) , где

\({{x}_{0}},{{y}_{0}} \) - координаты центра окружности,

\(r \) - радиус окружности,

\(\delta \) - угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end{array} \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Я думаю, вы заслуживаете больше, чем это. Вот мой ключ к тригонометрии:

  • Нарисуйте купол, стену и потолок
  • Тригонометрические функции - это не что иное, как процентное отношение этих трех форм.

Метафора для синуса и косинуса: купол

Вместо того, чтобы просто смотреть на сами треугольники, представьте их в действии, найдя какой-то частный пример из жизни.

Представьте, будто вы находитесь посередине купола и хотите подвесить экран для кинопроектора. Вы указываете пальцем на купол под неким углом “x”, и к этой точке должен быть подвешен экран.

Угол, на который вы указываете, определяет:

  • синус(x) = sin(x) = высота экрана (от пола до точки крепления на куполе)
  • косинус(x) = cos(x) = расстояние от вас до экрана (по полу)
  • гипотенуза, расстояние от вас к верхушке экрана, всегда одинаковое, равно радиусу купола

Хотите, чтобы экран был максимально большой? Повесьте его прямо над собой.

Хотите, чтобы экран висел на максимально большом расстоянии от вас? Вешайте его прямо перпендикулярно. У экрана будет нулевая высота в этом положении, и он будет висеть наиболее отдаленно, как вы и просили.

Высота и расстояние от экрана обратно пропорциональны: чем ближе висит экран, тем его высота будет больше.

Синус и косинус - это проценты

Никто в годы моей учебы, увы, не объяснил мне, что тригонометрические функции синус и косинус - это не что иное, как проценты. Их значения варьируются от +100% до 0 и до -100%, или от положительного максимума до нуля и до отрицательного максимума.

Скажем, я заплатил налог 14 рублей. Вы не знаете, насколько это много. Но если сказать, что я заплатил 95% в качестве налога, вы поймете, что меня просто ободрали, как липку.

Абсолютная высота ни о чем не говорит. Но если значение синуса составляет 0.95, то я понимаю, что телевизор висит почти на верхушке вашего купола. Очень скоро он достигнет максимальной высоты по центру купола, а затем начнет снова снижаться.

Как мы можем вычислить этот процент? Очень просто: поделите текущее значение высоты экрана на максимально возможное (радиус купола, который также называют гипотенузой).

Вот почему нам говорят, что “косинус = противоположный катет / гипотенуза”. Это всё для того, чтобы получить процент! Лучше всего определить синус как “процент текущей высоты от максимально возможной”. (Синус становится отрицательным, если ваш угол указывает “под землю”. Косинус становится отрицательным, если угол указывает на точку купола позади вас).

Давайте упростим расчеты, предположив, что мы находимся в центре единичной окружности (радиус = 1). Мы можем пропустить деление и просто взять синус, равный высоте.

Каждая окружность, по сути, является единичной, увеличенной или уменьшенной в масштабе до нужного размера. Поэтому определите связи наединичной окружности и примените результаты к вашему конкретному размеру окружности.

Поэкспериментируйте: возьмите любой угол и посмотрите, какое процентное соотношение высоты к ширине он отображает:

График роста значения синуса - не просто прямая линия. Первые 45 градусов покрывают 70% высоты, а последние 10 градусов (с 80°до 90°) покрывают всего 2%.

Так вам станет понятнее: если идти по кругу, при 0° вы подымаетесь почти вертикально, но по мере подхода к верхушке купола, высота изменяется всё меньше и меньше.

Тангенс и секанс. Стена

Однажды сосед построил стену прямо впритык к вашему куполу. Плакали ваш вид из окна и хорошая цена для перепродажи!

Но можно ли как-то выиграть в этой ситуации?

Конечно, да. А что, если мы повесим киноэкран прямо на соседскую стену? Вы нацеливаетесь на угол (х) и получаете:

  • тангенс(x) = tan(x) = высота экрана на стене
  • расстояние от вас до стены: 1 (это радиус вашего купола, стена никуда не двигается от вас, верно?)
  • секанс(x) = sec(x) = “длина лестницы” от вас, стоящего в центре купола, до верхушки подвешенного экрана

Давайте уточним пару моментов касательно тангенса, или высоты экрана.

  • он начинается на 0, и может подниматься бесконечно высоко. Вы можете растягивать экран все выше и выше на стене, чтобы получить просто бесконечное полотно для просмотра любимого фильма! (На такой огромный, конечно, придется прилично потратиться).
  • тангенс - это просто увеличенная версия синуса! И пока прирост синуса замедляется по мере продвижения к верхушке купола, тангенс продолжает расти!

Секансу тоже есть, чем похвастаться:

  • cеканс начинается с 1 (лестница лежит на полу, от вас к стене) и начинает подниматься оттуда
  • cеканс всегда длиннее тангенса. Наклоненная лестница, с помощью которой вы вешаете свой экран, должна быть длиннее, чем сам экран, верно? (При нереальных размерах, когда экран оооочень длинный, и лестницу нужно ставить практически вертикально, их размеры почти одинаковы. Но даже тогда секанс будет чуточку длиннее).

Помните, значения являются процентами . Если вы решили повесить экран под углом 50 градусов, tan(50)=1.19. Ваш экран на 19% больше, чем расстояние к стене (радиус купола).

(Введите x=0 и проверьте свою интуицию - tan(0) = 0, а sec(0) = 1.)

Котангенс и косеканс. Потолок

Невероятно, но ваш сосед теперь решил возвести перекрытие над вашим куполом. (Что с ним такое? Он, видимо, не хочет, чтобы вы за ним подглядывали, пока он разгуливает по двору голышом…)

Ну что ж, настало время построить выход на крышу и поговорить с соседом. Вы выбираете угол наклона, и начинаете строительство:

  • вертикальное расстояние между выходом на крыше и полом всегда равно 1 (радиусу купола)
  • котангенс(x) = cot(x) = расстояние между верхушкой купола и местом выхода
  • косеканс(x) = csc(x) = длина вашего пути на крышу

Тангенс и секанс описывает стену, а КОтангенс и КОсеканс описывает перекрытие.

Наши интуитивные умозаключения в этот раз похожи на предыдущие:

  • eсли вы возьмете угол, равный 0°, ваш выход на крышу будет длиться бесконечно, так как никогда не достигнет перекрытия. Проблемка.
  • cамый короткий “трап” на крышу получится, если строить его под углом 90 градусов к полу. Котангенс будет равен 0 (мы вообще не передвигаемся вдоль крыши, выходим строго перпендикулярно), а косеканс равен 1 (“длина трапа” будет минимальной).

Визуализируйте связи

Если все три случая нарисовать в комбинации купол-стена-перекрытие, получится следующее:

Ну надо же, это всё один тот же треугольник, увеличенный в размере, чтобы достать до стены и до перекрытия. У нас есть вертикальные стороны (синус, тангенс), горизонтальные стороны (косинус, котангенс) и “гипотенузы” (секанс, косеканс). (По стрелкам вы можете видеть, докуда доходит каждый элемент. Косеканс - это полное расстояние от вас до крыши).

Немного волшебства. Все треугольники объединяют одни и те же равенства:

Из теоремы Пифагора (a 2 + b 2 = c 2) мы видим, как связаны стороны каждого треугольника. Кроме того, соотношения типа “высота к ширине” должны быть также одинаковыми для всех треугольников. (Просто отступите от самого большого треугольника к меньшему. Да, размер изменился, но пропорции сторон останутся прежними).

Зная, какая сторона в каждом треугольнике равна 1 (радиусу купола), мы легко вычислим, что “sin/cos = tan/1”.

Я всегда пытался запомнить эти факты путем простой визуализации. На картинке ты четко видишь эти зависимости, и понимаешь, откуда они берутся. Этот прием гораздо лучше заучивания сухих формул.

Не стоит забывать о других углах

Тсс… Не нужно зацикливаться на одном графике, думая, что тангенс всегда меньше 1. Если увеличить угол, можно дойти до потолка, не достигнув стены:

Связи Пифагора всегда работают, но относительные размеры могут быть разными.

(Вы, наверное, заметили, что соотношение синус и косинус всегда самые маленькие, потому что они заключены внутри купола).

Подытожим: что нам нужно запомнить?

Для большинства из нас, я бы сказал, что этого будет достаточно:

  • тригонометрия поясняет анатомию математических объектов, таких как окружности и повторяющиеся интервалы
  • аналогия купол/стена/крыша показывает связь между различными тригонометрическими функциями
  • результатом тригонометрических функций являются проценты, которые мы применяем к нашему сценарию.

Вам не нужно запоминать формулы, типа 1 2 + cot 2 = csc 2 . Они годятся разве что для глупых тестов, в которых знание факта выдаётся за его понимание. Потратьте минутку, чтобы нарисовать полуокружность в виде купола, стену и крышу, подпишите элементы, и все формулы сами напросятся вам на бумагу.

Приложение: обратные функции

Любая тригонометрическая функция использует в качестве входного параметра угол и возвращает результат в виде процента. sin(30) = 0.5. Это означает, что угол в 30 градусов занимает 50% от максимальной высоты.

Обратная тригонометрическая функция записывается как sin -1 или arcsin (“арксинус”). Также часто пишут asin в различных языках программирования.

Если наша высота составляет 25% от высоты купола, каков наш угол?

В нашей табличке пропорций можно найти соотношение, где секанс делится на 1. Например, секанс на 1 (гипотенуза к горизонтали) будет равно 1 поделить на косинус:

Допустим, наш секанс равен 3.5, т.е. 350% от радиуса единичной окружности. Какому углу наклона к стене это значение соответствует?

Приложение: Несколько примеров

Пример: Найти синус угла x.

Скучная задачка. Давайте усложним банальное “найти синус” до “Какая высота в процентах от максимума (гипотенузы)?”.

Во-первых, заметьте, что треугольник повернут. В этом нет ничего страшного. Всё также у треугольника есть высота, она на рисунке указана зеленым.

А чему равна гипотенуза? По теореме Пифагора, мы знаем, что:

3 2 + 4 2 = гипотенуза 2 25 = гипотенуза 2 5 = гипотенуза

Хорошо! Синус - это процент высоты от самой длинной стороны треугольника, или гипотенузы. В нашем примере синус равен 3/5 или 0.60.

Конечно, мы можем пойти несколькими путями. Теперь мы знаем, что синус равен 0.60, и мы можем просто найти арксинус:

Asin(0.6)=36.9

А вот еще один подход. Заметьте, что треугольник стоит “лицом к лицу к стене”, так что вместо синуса мы можем использовать тангенс. Высота равна 3, расстояние стене - 4, так что тангенс равен ¾ или 75%. Мы можем использовать арктангенс, чтобы из процентного значения вернуться обратно в угол:

Tan = 3/4 = 0.75 atan(0.75) = 36.9 Пример: А доплывете ли вы до берега?

Вы в лодке, и у вас есть достаточно топлива, чтобы проплыть 2 км. Сейчас вы находитесь в 0.25 км от берега. Под каким максимальным углом к берегу вы можете доплыть до него так, чтобы хватило топлива? Дополнение к условию задачи: у нас в наличии есть только таблица значений арккосинусов.

Что мы имеем? Береговую линию можно представить как “стену” в нашем знаменитом треугольнике, а “длину лестницы”, приставленной к стене - максимально возможным преодолимым расстоянием на лодке к берегу (2 км). Вырисовывается секанс.

Сначала, нужно перейти на проценты. У нас есть 2 / 0.25 = 8, то есть мы можем проплыть расстояние, в 8 раз больше прямой дистанции до берега (или до стены).

Возникает вопрос “Чему равен секанс 8?”. Но мы не можем дать на него ответ, так как у нас есть только арккосинусы.

Мы используем наши ранее выведенные зависимости, чтобы привязать секанс к косинусу: “sec/1 = 1/cos”

Секанс 8 равен косинусу ⅛. Угол, косинус которого ⅛ равен acos(1/8) = 82.8. И это самый большой угол, который мы можем себе позволить на лодке с указанным количеством горючего.

Неплохо, правда? Без аналогии с куполом-стеной-потолком, я бы запутался в куче формул и вычислений. Визуализация задачи сильно упрощает поиск решения, к тому же, интересно увидеть, какая тригонометрическая функция в итоге поможет.

При решении каждой задачи думайте следующим образом: меня интересует купол (sin/cos), стена (tan/sec) или потолок (cot/csc)?

И тригонометрия станет куда приятнее. Легких вам вычислений!