Нейрон официальная версия. Мембранный потенциал покоя и действия Сущность формирования потенциала покоя

Введение
Нервная система
регулирует деятельность
организма благодаря
проведению информации
(возбуждения) по сети
нервных клеток.
Цель нейрофизиологии –
это понять биологические
механизмы, которые лежат
в основе проведения
информации по нервной
системе.

Нейроны проводят информацию на большие
расстояния с помощью электрических сигналов,
которые распространяются по аксону.
Используется специальный тип электрических
сигналов – нервный импульс или потенциал
действия.
Потенциал действия является основным
носителем информации в нервной системе

Мембранный потенциал покоя нейрона

Процесс генерации и распространения ПД
происходит на мембране нейрона.
Клетки, которые способны генерировать и проводить
нервный импульс, имеют возбудимую мембрану.

Мембранный потенциал покоя нейрона

Если на нейрон не действует раздражитель, то он
находится в состоянии покоя.
В состоянии покоя внешняя сторона мембраны
нейрона заряжена положительно, а внутренняя –
отрицательно. Это состояние называется
мембранным потенциалом покоя.
Мембранный потенциал покоя (МПП) – это
разность потенциалов на мембране нейрона, которую
нейрон имеет в состоянии относительного
физиологического покоя.

Мембранный потенциал покоя нейрона

Потенциал действия – это кратковременное
изменение мембранного потенциала, при котором
внешняя сторона мембраны на одну тысячную
секунду становится отрицательной, а внутренняя –
положительной.

Мембранный потенциал покоя нейрона

1.
2.
3.
Чтобы понять, как нейрон передает информацию,
необходимо изучить:
каким образом в состоянии покоя на мембране
нейрона возникает и поддерживается мембранный
потенциал покоя;
каким образом мембранный потенциал
кратковременно изменяется во время генерации
нервного импульса;
каким образом нервный импульс распространяется
вдоль мембраны нейрона.

Мембранный потенциал покоя нейрона

Механизм возникновения МПП
Движение ионов
МПП возникает в результате движения ионов
(заряженных частиц) через ионные каналы
мембраны клетки.
Ионы – это атомы или молекулы, которые имеют
положительный (катионы) или отрицательный
(анионы) заряд.
Например, K+, Na+, Cl¯, Ca2+ и т.д.

Механизм возникновения МПП

Движение ионов через
ионные каналы связано с
действием двух факторов:
1. диффузия
2. электрическая сила
Диффузия – это движение
ионов из мест c высокой
концентрацией в места с
низкой концентрацией.

Механизм возникновения МПП

Термины
Градиент концентрации – это разность
концентрации ионов.
Сила концентрационного градиента – это сила
химической природы, которая перемещает ионы из
мест с высокой концентрацией в места с низкой
концентрацией данного иона.
Правило: чем больше градиент концентрации, тем
больше сила концентрационного градиента.

10. Механизм возникновения МПП

Электрическая сила (I) – это
сила, которая перемещает
ионы в электрическом поле.
Электрическая сила
перемещает отрицательные
ионы (анионы) к
положительному заряду
(аноду), а положительные ионы
(катионы) – к отрицательному
заряду (катоду).

11. Механизм возникновения МПП

Движение электрических зарядов в электрическом
поле называется электрическим током.
Сила электрического тока определяется двумя
факторами:
1. электрическим потенциалом
2. электрической проводимостью

12. Механизм возникновения МПП

Электрический потенциал (V) – это
сила, которая отражает различия в
заряде между катодом и анодом.
Чем больше различия в заряде, тем
больше электрический потенциал, тем
сильнее ток ионов.
Электрический потенциал измеряется
в Вольтах (V).
Электрическая проводимость – это
относительная способность
электрических зарядов двигаться в
электрическом поле.
Чем выше электрическая
проводимость, тем сильнее ток ионов.

13. Механизм возникновения МПП

Электрическое сопротивление (R) – сила,
препятствующая движению электрических зарядов.
Электрическое сопротивление измеряется в Омах
(Ω) .
Соотношение между электрическим потенциалом,
сопротивлением и силой тока описывается законом
Ома.
I = V/R
Сила тока равна нулю в двух случаях:
1. либо электрический потенциал равен нулю,
2. либо существует очень большое сопротивление.

14. Механизм возникновения МПП

Движение специфических ионов
через мембрану под действием
электрической силы может быть
только при одновременном
соблюдении двух условий:
1. мембрана содержит каналы, которые
проницаемы для данного вида ионов;
2. существует разность потенциалов по
обе стороны мембраны.

15. Ионный механизм мембранного потенциала покоя

Мембранный потенциал
(МП) – это разность
потенциалов на мембране
нейрона, которую нейрон
имеет в данный момент
времени (Vm).
Мембранный потенциал
нейрона может быть
измерен с помощью
микроэлектрода,
помещенного в цитоплазму
нейрона и подсоединенного
к вольтметру.

16. Ионный механизм мембранного потенциала покоя

В состоянии покоя внутренняя сторона мембраны
заряжена отрицательно, а внешняя сторона –
положительно.
Мембранный потенциал покоя (МПП) типичного
нейрона примерно равен - 65 mV.
Vm = -65 mV
Чтобы понять, каким образом возникает и
поддерживается МПП, необходимо рассмотреть
распределение некоторых ионов внутри нейрона и
окружающей его внешней среде.

17. Ионный механизм мембранного потенциала покоя

Равновесный потенциал
Рассмотрим гипотетическую клетку при
следующих условиях:
1. внутри клетки концентрация катионов K+ и
анионов А¯ выше, чем во внешней среде,
2. мембрана клетки не содержит ионных
каналов.
В этих условиях, несмотря на наличие
разности концентраций ионов,
1. не будет наблюдаться ток ионов через
мембрану;
2. мембранный потенциал будет равен
нулю.

18. Ионный механизм мембранного потенциала покоя

Ситуация изменится, если в мембране появятся
ионные каналы, проницаемые для ионов K+, но
не проницаемые для анионов А¯.
Ионы K+ по градиенту концентрации начнут
перемещаться из клетки во внеклеточную среду.
За счет отрицательных ионов А¯ на внутренней
стороне мембраны начинает скапливаться
отрицательный заряд, а на внешней стороне
мембраны начинает появляться положительный
заряд.
Таким образом, на мембране нейрона начинает
появляться разность потенциалов.

19. Ионный механизм мембранного потенциала покоя

По мере увеличения разности потенциалов
начинает возрастать электрическая сила,
которая толкает ионы K+ обратно в клетку (так
как положительно заряженные ионы K+
притягиваются к отрицательно зараженному
слою на внутренней стороне мембраны).
Когда на мембране достигается определенное
значение мембранного потенциала
электрическая сила, стремящаяся загнать
ионы K+ внутрь клетки, становится равной
химической силе градиента концентрации,
которая стремится вытолкнуть ионы K+ из
клетки.
Возникает состояние равновесия, при
котором сила электрической природы и сила
химической природы имеют одинаковое
значение, но направлены в разные стороны, а
движение ионов K+ приостанавливается.

20. Ионный механизм мембранного потенциала покоя

Ионный равновесный потенциал – это разность
потенциалов на мембране, при которой сила химической и
электрической природы уравновешивают друг друга по
отношению к данному иону.
Например, калиевый равновесный потенциал равен
примерно – 80 mV.
Вывод: появление мембранного потенциала в нейроне
происходит автоматически при соблюдении двух условий:
1. существует разница концентраций ионов между внешней и
внутренней средой нейрона;
2. существует избирательная проницаемость мембраны
нейрона для данного иона.

21. Ионный механизм мембранного потенциала покоя

22. Ионный механизм мембранного потенциала покоя

Разница концентраций различных ионов в
реальном нейроне
В реальном нейроне разные ионы по разному
распределены во внутриклеточной и внеклеточной
среде.
Ионы
Внеклеточная
концентрация
Внутриклеточная
концентрация
Отношение
Равновесный
потенциал
K+
5
100
1:20
-80 mV
Na+
150
15
10:1
62 mV
Ca2+
2
0,0002
10000:1
123 mV
Cl¯
150
13
11,5:1
-65 mV

23. Ионный механизм мембранного потенциала покоя

Каждый ион имеет свой собственный
равновесный потенциал.
Правило – концентрация ионов K+ больше
внутри клетки, а ионов Na+ и Cl¯ во
внешней среде.
Разница концентраций различных ионов
возникает в результате работы нескольких
ионных насосов, которые встроены в
мембрану нейрона.

24. Ионный механизм мембранного потенциала покоя

Два ионных насоса особенно важны
для понимания работы нейрона:
1. натрий-калиевый
2. кальциевый насос
Натрий-калиевый насос,
используя энергию АТФ, выкачивает
из клетки ионы Na+ и закачивает в
клетку ионы K+ против градиента
концентрации этих ионов.
За один цикл насос выкачивает
3
иона Na+ и 2 иона K+.
На работу этого насоса тратится
больше 70% всей АТФ,
находящейся в мозге.

25. Ионный механизм мембранного потенциала покоя

Кальциевый насос выкачивает из нейрона ионы Ca2+
против градиента его концентрации.
1.
2.
Кроме того существуют дополнительные механизмы,
которые обеспечивают уменьшение концентрации ионов
Ca2+ в цитоплазме нейрона (0,00002 mM):
внутриклеточные белки, которые связывают данные
ионы;
клеточные органеллы (в частности, митохондрии и
эндоплазматический ретикулум), которые депонируют
(изолируют) ионы Ca2+.

26. Ионный механизм мембранного потенциала покоя

Значение ионных насосов
Без ионных насосов в нейроне не смогла бы
поддерживаться разность концентрации
различных ионов, а, следовательно, в
нейроне не мог бы существовать
мембранный потенциал покоя, без которого, в
свою очередь, нейрон бы не смог отвечать на
внешнее воздействие и передавать
возбуждение.

27. Ионный механизм мембранного потенциала покоя

Относительная проницаемость мембраны для разных ионов
В реальном нейроне мембрана нейрона проницаема не для одного, а
для разных ионов.
Однако проницаемость мембраны для разных ионов разная.
Рассмотрим несколько сценариев для ионов Na+ и K+:
1. Если мембрана проницаема только для иона K+, то мембранный
потенциал будет равен калиевому равновесному потенциалу
(примерно -80 mV).
2. Если мембрана проницаема только для иона Na+, то мембранный
потенциал будет равен натриевому равновесному потенциалу
(примерно 62 mV).
3. Если мембрана имеет одинаковую проницаемость для ионов Na+ и K+, то
мембранный потенциал будет равен среднему значению между
натриевым и калиевым равновесным потенциалом (примерно - 9 mV).

28. Ионный механизм мембранного потенциала покоя

4. Если проницаемость мембраны в 40 раз больше для ионов K+, чем
для ионов Na+, то значение итогового мембранного потенциала
опять будет между натриевым и калиевым равновесным
потенциалом, но при этом ближе к калиевому равновесному
потенциалу.
Последний сценарий наиболее близок к ситуации в реальном
нейроне, в котором мембранный потенциал покоя равен -65 mV.
В реальном нейроне в состоянии покоя мембрана имеет высокую
проницаемость для ионов K+ и относительно низкую для ионов Na+.

29. Ионный механизм мембранного потенциала покоя

Вывод: высокая проницаемость мембраны
нейрона для ионов K+ является основным
источником мембранного потенциала
покоя (МПП), при этом относительная низкая
проницаемость мембраны для других ионов
(особенно ионов Na+) также вносит
определенный вклад в итоговое значение
МПП нейрона.

30. Ионный механизм мембранного потенциала покоя

Регуляция концентрации ионов K+ во внеклеточной
среде
Мембранный потенциал очень чувствителен к
изменению концентрации ионов K+ во внеклеточной
среде. Например, если концентрация ионов K+ во
внешней среде уменьшится в 10 раз, то мембранный
потенциал покоя изменится от -65 до -17 mV.
Чувствительность мембранного потенциала к
концентрации ионов K+ привела в эволюции к
появлению механизмов, которые тонко регулируют
содержание этих ионов во внеклеточной среде:
1. гематоэнцефалический барьер
2. глиальные клетки (астроциты)

31. Ионный механизм мембранного потенциала покоя

Гематоэнцефалический барьер (ГЭБ) – это
механизм, обеспечивающий ограниченный доступ
веществ, которые поступают через стенки капилляров,
к нейронам и глиальным клеткам внутри мозга.
Одна из функций ГЭБа – ограничение поступления из
крови ионов K+ во внеклеточную среду, окружающую
нейроны.

32. Ионный механизм мембранного потенциала покоя

Астроциты обеспечивают
регуляцию концентрации
ионов K+ с помощью
калиевых насосов и
калиевых ионных каналов,
встроенных в их мембрану.
Когда внеклеточная
концентрация ионов K+
возрастает, эти ионы начинают
заходить внутрь астроцитов
через калиевые ионные
каналы.

33. Ионный механизм мембранного потенциала покоя

Вход ионов K+ в цитоплазму
астроцита приводит к повышению
локальной внутриклеточной
концентрации этих ионов,
которые начинают
распространяться по системе
разветвленных отростков в
другие части глиальной клетки.
Таким образом, астроциты
обладают глиальным
буферным механизмом,
который поддерживает
концентрацию ионов K+ во
внеклеточной среде на
постоянном уровне.

34. Ионный механизм мембранного потенциала покоя

Заключение
Механизм возникновения МПП
1. Активность натрий-калиевого насоса обеспечивает и
поддерживает высокую концентрацию ионов K+ во
внутриклеточной среде нейрона.
2. Мембрана нейрона в состоянии покоя обладает высокой
проницаемостью для ионов K+, так как имеет многочисленные
калиевые каналы.
3. Движение ионов K+ через мембрану нейрона по градиенту их
концентрации приводит к появлению отрицательного заряда на
внутренней стороне мембраны и положительного заряда на
внешней стороне мембраны.
4. Разница потенциалов на мембране нейрона может
рассматриваться как заряд электрической батарейки, который
постоянно поддерживается за счет ионных насосов,
работающих на основе энергии АТФ.

Чтобы провести сигнал от предшествующей клетки до последующей, нейрон генерирует электрические сигналы внутри себя. Твои движения глазами при чтении этого абзаца, ощущение мягкого кресла под попой, восприятие музыки из наушников и многое другое основаны на том, что внутри тебя проходят сотни миллиардов электрических сигналов. Такой сигнал может зародиться в спинном мозге и пройти до кончика пальца ноги по длинному аксону. Или может преодолеть ничтожно малое расстояние в глубинах мозга, ограничиваясь пределами интернейрона с короткими отростками. Любой нейрон, получивший сигнал, прогоняет его через свое тело и выросты, и этот сигнал имеет электрическую природу.

Еще в 1859 году ученые смогли измерить скорость, с которой передаются эти электрические сигналы. Оказалось, что электричество, передаваемое по живому аксону, принципиально отличается от электрического тока в металлах. По металлическому проводу электрический сигнал передается со скоростью, близкой к скорости света (300 000 километров в секунду), ведь в металле много свободных электронов. Однако, несмотря на эту скорость, сигнал ощутимо ослабевает, преодолевая большие расстояния. Если бы по аксонам сигналы передавались тем же способом, которым передаются в металлах, то нервный импульс, идущий от нервного окончания в коже большого пальца твоей ноги, полностью затухал бы, не достигая твоего мозга — электрическое сопротивление органической материи слишком велико, а сигнал слишком слаб.

Исследования показали, что электричество передается по аксонам намного медленнее, чем по проводам, и что в основе этой передачи лежит неизвестный ранее механизм, в результате которого сигнал распространяется со скоростью около 30 метров в секунду. Электрические сигналы, идущие по нервам, в отличие от сигналов, идущих по проводам, не ослабевают по ходу своего движения. Причина этого в том, что нервные окончания не пропускают через себя сигнал пассивно, просто позволяя имеющимся в них заряженным частицам передавать его друг другу. Они являются в каждой своей точке активным излучателем этого сигнала, ретранслируя его, и подробное описание этого механизма потребует отдельной главы. Таким образом, пожертвовав высокой скоростью проведения нервных импульсов, за счет активной передачи сигнала нейрон получает гарантию того, что возникший в большом пальце ноги сигнал достигнет спинного мозга, нисколько не ослабев.

Чтобы наблюдать прохождение электрической волны возбуждения, или потенциала действия (action potential [‘ækʃən pə’tenʃəl] ), в живой клетке, достаточно простого устройства: один конец тонкой металлической проволоки помещается на наружную поверхность аксона сенсорного нейрона кожи, а другой подводится к самописцу, чертящему линию вверх при усилении сигнала, и вниз — при ослаблении. Каждое прикосновение к коже вызывает один или несколько потенциалов действия. При возникновении каждого потенциала самописец рисует узкий длинный пик.

Потенциал действия сенсорного нейрона длится всего лишь около 0,001 секунды и включает две фазы: быстрого нарастания, достигающего пика, а затем почти столь же быстрого спада возбуждения, приводящего к исходному положению. И тут самописец сообщает неожиданный факт: все потенциалы действия, возникающие в одной и той же нервной клетке, примерно одинаковы. Это можно увидеть на картинке слева: все пики, нарисованные самописцем, имеют примерно одну и ту же форму и амплитуду независимо от того, насколько сильным или продолжительным было прикосновение к коже, их вызвавшее. Слабое поглаживание или ощутимый щипок будут переданы потенциалами действия одной и той же величины. Потенциал действия представляет собой постоянный сигнал, подчиняющийся принципу «все или ничего»: после превышения раздражителем некоего порогового значения возникает всегда примерно одинаковый сигнал, не больше и не меньше обычного. А если раздражитель меньше порогового значения, то сигнал вовсе не будет передаваться: например, можно так легко коснуться кожи кончиком пера, что это прикосновение не будет чувствоваться.

Принцип «все или ничего» в возникновении потенциала действия вызывает новые вопросы. Как сенсорный нейрон сообщает о силе раздражителя - сильное или слабое давление, яркий или тусклый свет? Как он сообщает о продолжительности действия раздражителя? Наконец, как нейроны отличают один тип сенсорной информации от другого - например, как они отличают прикосновение от боли, света, запаха или звука? И как они отличают сенсорную информацию для восприятия от моторной информации для действия?

Эволюция решила вопрос о том, как сообщить о силе раздражителя, с помощью использования одного и того же вида сигналов одной и той же величины: эта сила определяется частотой (frequency [‘friːkwənsɪ] ), с которой испускаются потенциалы действия. Слабый раздражитель, например легкое прикосновение к руке, приводит к испусканию всего двух-трех потенциалов действия в секунду, в то время как сильное давление, как при щипке или ударе по локтю, может вызвать очередь из сотни потенциалов действия в секунду. При этом продолжительность ощущения определяется продолжительностью возникновения потенциалов действия.

Используют ли нейроны разные электрические коды, сообщая мозгу, что несут информацию о разных раздражителях, таких как боль, свет или звук? Оказалось, что нет! Это удивительно, но между потенциалами действия, генерируемыми нейронами из различных сенсорных систем (например, зрительной или тактильной), разница весьма незначительна! Таким образом, характер и природа ощущения не зависят от различий в потенциалах действия (что открывает довольно захватывающую перспективу для размышлений на тему «матрицы» из одноименного фильма). Нейрон, передающий слуховую информацию, устроен точно так же, как нейрон из зрительной нервной цепи, и проводят они одни и те же потенциалы действия, одним и тем же способом. Без знания, к какой нервной цепи принадлежит конкретный нейрон, только по анализу его функционирования невозможно определить, какую информацию он несет.

Природа передаваемой информации зависит прежде всего от типа возбуждаемых нервных волокон и специфических систем мозга, с которыми эти волокна связаны. Ощущения каждого типа передаются по своим проводящим путям, и разновидность передаваемой нейроном информации зависит именно от пути, в состав которого входит этот нейрон. В любом сенсорном проводящем пути информация передается от первого сенсорного нейрона (рецептора, реагирующего на внешний раздражитель, например прикосновение, запах или свет) к специализированным нейронам в спинном или головном мозге. Таким образом, зрительная информация отличается от слуховой лишь тем, что передается по другим проводящим путям, начинающимся в сетчатке глаза и заканчивающимся в участке мозга, который отвечает за визуальное восприятие.

Сигналы, посылаемые от моторных нейронов мозга к мышцам, также почти идентичны передаваемым по сенсорным нейронам от кожи в мозг. Они подчиняются тому же принципу «все или ничего», так же передают интенсивность сигнала с помощью частоты потенциалов действия, и так же результат сигнала зависит только от того, в какую нервную цепь включен этот нейрон. Таким образом, быстрая череда потенциалов действия, идущая по определенному проводящему пути, вызывает именно движение твоих пальцев, а не, скажем, восприятие разноцветных огней, лишь потому, что данный путь связан с мышцами рук, а не с сетчаткой глаз.

Универсальность потенциалов действия не ограничивается схожестью их проявления в разных нейронах, находящихся в пределах одного организма. Они настолько одинаковы у разных животных, что даже умудренный опытом исследователь не способен точно отличить запись потенциала действия нервного волокна кита, мыши, обезьяны или его научного руководителя. Тем не менее потенциалы действия в разных клетках не являются идентичными: небольшая разница в их амплитуде и длительности все же есть, и утверждение «все потенциалы действия одинаковы» так же неточно, как и «все бугенвиллии одинаковы».

Итак, каждый нейрон передает сигнал через свое тело и отростки одним и тем же образом. Все разнообразие информации, получаемой нами от сенсорных нейронов, все движения, которые может совершать наше тело — результат передачи единственного типа сигналов внутри нейронов. Осталась «мелочь»: понять, что же это за сигнал и как он передается.

Мы привычно отделяем все, что считаем живой природой, в том числе и себя самих, от «неживых» вещей, в том числе металлов и передающегося через них электрического тока. Тем удивительнее осознавать, что в наших телах металлы не просто присутствуют — они необходимы, без них тело не сможет существовать. Электрический ток — явление не разовое, а непрерывно возникающее в сотне миллиардов нейронов, пронизавших своими отростками все наше тело. Прямо сейчас ты можешь ощутить самые разные признаки его присутствия: то, что ты осознаешь этот текст, есть результат бесчисленных передач электрического тока. Чувство голода и удовольствие от запаха готовящейся еды, само восприятие этого запаха, прикосновение залетевшего в окно ветра к твоей коже… Перечислять можно бесконечно. И желание понять, каким же образом все это происходит, также складывается из возникающих в нейронах электрических импульсов.

Так как целью этой главы является сообщение лишь самой общей информации о прохождении нервного импульса, то здесь же необходимо рассмотреть ту среду, в которой он возникает, те условия в клетке, которые делают возможным его возникновение и передачу. Поэтому стоит начать с изучения плацдарма, на котором будут развиваться события, а именно с нейрона в состоянии покоя (dormant state [‘dɔːmənt steɪt] ).

Еще в середине прошлого века ученые нашли способ установить, в какой части нейрона существует электрический заряд. Для этого используют вольтметр (voltmeter [‘vəultˌmiːtə] ) (прибор для измерения напряжения электрического поля) с двумя электродами. Один электрод помещают внутрь нейрона, располагая его близко к клеточной мембране, а второй электрод находится в окружающей нейрон среде, с другой стороны той же мембраны. Вольтметр показывает, что с разных сторон клеточной мембраны существуют электрические заряды , отрицательный внутри клетки и положительный снаружи. Существование таких разнополюсных электрических зарядов по обе стороны мембраны создает электрическое поле, важной характеристикой которого является потенциал . Потенциал, говоря простым языком, это способность совершать работу, например работу по перетаскиванию заряженной частицы с места на место. Чем больше отрицательных зарядов накопилось по одну сторону, и чем больше положительных — по другую сторону мембраны, тем сильнее создаваемое ими электрическое поле, и тем с большей силой они способны перетаскивать туда-сюда заряженные частицы. Разницу между внешним и внутренним электрическими зарядами называют мембранным потенциалом (membrane potential [‘membreɪn pə’tenʃəl] ) покоя. Для нейрона он равен примерно 70 мВ (милливольт), то есть 70 тысячных вольта или семь сотых вольта. Для сравнения, разность потенциалов в батарейке АА равна 1,5 вольта — в 20 раз больше. То есть мембранный потенциал покоя нейрона всего лишь в 20 раз слабее, чем между клеммами батарейки АА — довольно большой, получается. Электрический потенциал существует только на мембране, и в других своих частях нейрон электрически нейтрален.

Если написать более точно, то мембранный потенциал покоя нейрона равен -70 мВ (минус семьдесят милливольт). Знак минус означает лишь то, что отрицательный заряд находится именно внутри клетки, а не снаружи, и таким образом создаваемое электрическое поле способно перетаскивать через мембрану внутрь клетки положительно заряженные ионы.

Действующие лица в создании мембранного потенциала покоя:

1 . В клеточной мембране нейрона существуют каналы, по которым несущие электрический заряд ионы могут путешествовать сквозь нее. При этом мембрана не является всего лишь пассивной «перегородкой» между внутренней средой нейрона и окружающей его межклеточной жидкостью: специальные белки, внедренные в плоть мембраны, открывают и закрывают эти каналы, и таким образом мембрана контролирует прохождение ионов — атомов, имеющих электрический заряд. Накапливая отрицательно заряженные ионы внутри клетки, нейрон увеличивает количество отрицательных зарядов внутри, тем самым приводя к увеличению положительных зарядов снаружи, и таким образом усиливается электрический потенциал. Так как протон имеет положительный заряд, а электрон отрицательный, то при избытке протонов получается положительно заряженный ион, а при избытке электронов — отрицательно заряженный. Если хочется более подробной информации об атомах и ионах, можно вернуться в . Важно понимать, что мембранный потенциал существует именно на границе клеточной мембраны, а жидкости в целом внутри и вне нейрона остаются электрически нейтральными. Ионы, для которых мембрана проницаема, остаются вблизи нее, поскольку положительные и отрицательные заряды взаимно притягиваются друг к другу. В результате снаружи мембраны образуется слой «сидящих» на ней положительных ионов, а внутри — отрицательных. Таким образом, мембрана играет роль электрической емкости, разделяющей заряды, внутри которой есть электрическое поле. Мембрана, поэтому, является природным конденсатором.

2 . отрицательно заряженные протеины , находящиеся внутри нейрона возле внутренней поверхности мембраны. Заряд протеинов всегда остается одним и тем же и является только частью общего заряда внутренней поверхности мембраны. В отличие от ионов, протеины не могут выходить из клетки и заходить в нее — для этого они слишком большие. Общий заряд меняется в зависимости от количества находящихся возле мембраны положительно заряженных ионов, концентрация которых может меняться за счет их перехода из клетки наружу, и извне вовнутрь.

3 . положительно заряженные ионы калия (К +) могут свободно перемещаться между внутренней и внешней средой, когда нейрон находится в состоянии покоя. Перемещаются они через постоянно открытые проточные калиевые каналы (flow potassium passage ), через которые могут пройти только ионы К + , и ничто другое. Проточными называются каналы, не имеющие ворот, а значит открытые при любом состоянии нейрона. Внутри клетки ионов калия гораздо больше, чем снаружи. Это происходит за счет постоянной работы натрий-калиевого насоса (про него будет рассказано ниже), поэтому в состоянии покоя нейрона ионы К + начинают перемещаться во внешнюю среду, поскольку концентрация одного и того же вещества стремится выровняться в общей системе. Если мы в бассейн с водой в одном углу выльем какое-то вещество, то его концентрация в этом углу будет очень большой, а в других частях бассейна — нулевой или очень маленькой. Однако, спустя некоторое время мы обнаружим, что концентрация этого вещества выровнялась по всему бассейну за счет броуновского движения. В этом случае говорят о «парциальном давлении» того или иного вещества, будь это жидкость или газ. Если в одном углу бассейна будет вылит спирт, то образуется большая разница в концентрации спирта между этим углом и остальным бассейном. Возникнет парциальное давление молекул спирта, и они постепенно распределятся равномерно по бассейну так, что парциальное давление исчезнет, поскольку концентрация молекул спирта везде выровняется. Таким образом, ионы К + уносят с собой положительный заряд из нейрона, уходя наружу за счет парциального давления, которое сильнее, чем сила притяжения отрицательно заряженных протеинов, в том случае, если разница в концентрации ионов внутри и снаружи клетки достаточно велика. Так как внутри остаются отрицательно заряженные протеины, то таким образом на внутренней стороне мембраны формируется отрицательный заряд. Для ясного понимания работы клеточных механизмов важно помнить, что несмотря на постоянное вытекание ионов калия из клетки, внутри нейрона их всегда больше, чем снаружи.

4 . положительно заряженные ионы натрия (Na +) находятся с внешней стороны мембраны и создают там положительный заряд. Во время фазы покоя нейрона натриевые каналы клетки закрыты , и Na + не могут пройти внутрь, а их концентрация снаружи повышается за счет работы натрий-калиевого насоса, выводящего их из нейрона.

5 . роль отрицательно заряженных ионов хлора (Cl —) и положительно заряженных ионов кальция (Ca 2+) для создания мембранного потенциала невелика, поэтому их поведение пока останется за кадром.

Формирование мембранного потенциала покоя проходит в два этапа:

Этап I . создается небольшая (-10 мВ) разница потенциалов с помощью натрий-калиевого насоса .

В отличие от других каналов мембраны, натрий-калиевый канал способен пропускать через себя и ионы натрия, и ионы калия. Причем Na + может пройти сквозь него только из клетки наружу, а К + снаружи внутрь. Один цикл работы этого канала включается в себя 4 шага:

1 . «ворота» натрий-калиевого канала открыты только с внутренней стороны мембраны, и туда заходят 3 Na +

2 . присутствие Na + внутри канала воздействует на него так, что он может частично разрушить одну молекулу АТФ (ATP ) (аденозинтрифосфата ), (adenosine triphosphate [ə’dɛnəsiːn trai’fɔsfeɪt] ) являющуюся «аккумулятором» клетки, запасающим энергию и отдающим ее при необходимости. При таком частичном разрушении, заключающемся в отщеплении от конца молекулы одной фосфатной группы PO 4 3− , выделяется энергия, которая как раз и расходуется на перенос Na + во внешнее пространство.

3 . когда канал открывается для того, чтобы Na + вышел наружу, он остается открытым, и в него попадают два иона К + — их притягивают отрицательные заряды протеинов изнутри. То, что в канале, вмещающем три иона натрия, помещается всего два иона калия, вполне логично: атом калия имеет больший диаметр.

4 . присутствие ионов калия теперь в свою очередь воздействует на канал так, что внешние «ворота» закрываются, а внутренние открываются, и К + поступают во внутреннюю среду нейрона.

Таким образом работает натрий-калиевый насос, «обменивая» три иона натрия на два иона калия. Так как электрический заряд у Na + и К + одинаковый, получается что из клетки выводится три положительных заряда, а внутрь попадает только два. За счет этого внутренний положительный заряд клеточной мембраны снижается, а внешний — увеличивается. К тому же создается разница в концентрации Na + и К + по разные стороны мембраны:

=) снаружи клетки оказывается много ионов натрия, а внутри — мало. При этом натриевые каналы закрыты, и попасть назад в клетку Na + не может, и далеко от мембраны он не уходит, так как притягивается существующим с внутренней стороны мембраны отрицательным зарядом.

=) внутри клетки много ионов калия, а вот снаружи их мало, и это приводит к вытеканию К + из клетки через открытые во время фазы покоя нейрона калиевые каналы.

Этап II формирования мембранного потенциала покоя как раз основан на этом вытекании ионов калия из нейрона. На рисунке слева показан ионный состав мембраны в начале второго этапа формирования потенциала покоя: множество К + и отрицательно заряженных протеинов (обозначенных А 4-) внутри, и облепившие мембрану снаружи Na + . Перемещаясь во внешнюю среду, ионы калия уносят из клетки свои положительные заряды, при этом суммарный заряд внутренней мембраны снижается. Так же как положительные ионы натрия, вытекшие из клетки ионы калия остаются снаружи мембраны, притягиваемые внутренним отрицательным зарядом, и внешний положительный заряд мембраны складывается из суммы зарядов Na + и К + . Несмотря на вытекание через проточные каналы, внутри клетки ионов калия всегда больше, чем снаружи.

Возникает вопрос: почему ионы калия не продолжают вытекать наружу до того момента, пока их количество внутри клетки и вне ее не станет одинаковым, то есть до тех пор, пока не исчезнет парциальное давление, создаваемое этими ионами? Причина этого заключается в том, что когда К + покидают клетку, снаружи увеличивается положительный заряд, а внутри образуется избыток отрицательного заряда. Это снижает желание ионов калия выходить из клетки, ведь наружный положительный заряд их отталкивает, а внутренний отрицательный притягивает. Поэтому через какое-то время К + перестают вытекать несмотря на то, что во внешней среде их концентрация ниже, чем во внутренней: влияние зарядов по разные стороны мембраны превышает силу парциального давления, то есть превышает стремление К + распределиться равномерно в жидкости внутри и вне нейрона. В момент достижения этого равновесия мембранный потенциал нейрона и останавливается примерно на -70 мВ.

Как только нейроном достигнут мембранный потенциал покоя, он готов для возникновения и проведения потенциала действия, про который речь пойдет в следующей цитологической главе.

Таким образом, подытожим : неравномерность распределения ионов калия и натрия по обе стороны мембраны вызвана действием двух соперничающих сил: а) силой электрического притяжения и отталкивания, и б) силой парциального давления, возникающего при разнице в концентрациях. Работа этих двух соперничающих сил протекает в условиях существования по-разному устроенных натриевых, калиевых и натриево-калиевого каналов, которые выступают в роли регуляторов действия этих сил. Калиевый канал является проточным, то есть он всегда открыт в состоянии покоя нейрона, так что ионы К + могут спокойно ходить туда-сюда под воздействием сил электрического отталкивания/притяжения и под воздействием силы, вызванные парциальным давлением, то есть разницей в концентрации этих ионов. Натриевый канал всегда закрыт в состоянии покоя нейрона, так что через них ионы Na + ходить не могут. И, наконец, натриево-калиевый канал, устроенный так, что он работает как насос, который при каждом цикле выгоняет три иона натрия наружу, и загоняет два иона калия внутрь.

Вся эта конструкция и обеспечивает возникновение мембранного потенциала покоя нейрона: т.е. состояния, при котором достигается две вещи:

а) внутри есть отрицательный заряд, а снаружи — положительный.

б) внутри много ионов К + , облепивших отрицательно заряженные части протеинов, и таким образом возникает калиевое парциальное давление — стремление ионов калия выйти наружу для выравнивания концентрации.

в) снаружи много ионов Na + , образующих отчасти пары с ионами Cl — . И таким образом возникает натриевое парциальное давление — стремление ионов натрия войти внутрь клетки для выравнивания концентрации.

В результате работы калиево-натриевого насоса мы получаем три силы, существующие на мембране: силу электрического поля и силу двух парциальных давлений. Эти силы и начинают работать, когда нейрон выходит из состояния покоя.

Зачем нам нужно знать, что такое потенциал покоя?

Что такое "животное электричество"? Откуда в организме берутся "биотоки"? Как живая клетка, находящаяся в водной среде, может превратиться в "электрическую батарейку"?

На эти вопросы мы сможем ответить, если узнаем, как клетка за счёт перераспределения электрических зарядов создаёт себе электрический потенциал на мембране.

Как работает нервная система? С чего в ней всё начинается? Откуда в ней берётся электричество для нервных импульсов?

На эти вопросы мы также сможем ответить, если узнаем, как нервная клетка создаёт себе электрический потенциал на мембране.

Итак, понимание того, как работает нервная система, начинается с того, что надо разобраться, как работает отдельная нервная клетка - нейрон.

А в основе работы нейрона с нервными импульсами лежит перераспределение электрических зарядов на его мембране и изменение величины электрических потенциалов. Но чтобы потенциал изменять, его нужно для начала иметь. Поэтому можно сказать, что нейрон, готовясь к cвоей нервной работе, создаёт на своей мембране электрический потенциал , как возможность для такой работы.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом перемещаются электрические заряды на нервных клетках к как за счёт этого на мембране появляется электрический потенцила. Этим мы и займёмся, и назовём этот процесс появления электрического потенциала у нейронов - формирование потенциала покоя .

Определение

В норме, когда клетка готова к работе, у неё уже есть электрический заряд на поверхности мембраны. Он называется мембранный потенциал покоя .

Потенциал покоя - это разность электрических потенциалов между внутренней и наружной сторонами мембраны, когда клетка находится в состоянии физиологического покоя. Его средняя величина составляет -70 мВ (милливольт).

"Потенциал" - это возможность , он сродни понятию "потенция". Электрический потенциал мембраны - это её возможности по перемещению электрических зарядов, положительных или отрицательных. В роли зарядов выступают заряженные химические частицы - ионы натрия и калия, а также кальция и хлора. Из них только ионы хлора заряжены отрицательно (-), а остальные - положительно (+).

Таким образом, имея электрический потенциал, мембрана может перемещать в клетку или из клетки указанные выше заряженные ионы.

Важно понимать, что в нервной системе электрические заряды создаются не электронами, как в металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. Электрический ток в организме и его клетках - это поток ионов, а не электронов, как в проводах. Обратите также внимание на то, что заряд мембраны измеряется изнутри клетки, а не снаружи.

Если говорить уж совсем примитивно просто, то получается, что снаружи вокруг клетки будут преобладать "плюсики", т.е. положительно заряженные ионы, а внутри - "минусики", т.е. отрицательно заряженные ионы. Можно сказать, что внутри клетка электроотрицательна . И теперь нам всего лишь надо объяснить, как это так получилось. Хотя, конечно, неприятно сознавать, что все наши клетки - отрицательные "персонажи". ((

Сущность

Сущность потенциала покоя - это преобладание на внутренней стороне мембраны отрицательных электрических зарядов в виде анионов и недостаток положительных электрических зарядов в виде катионов, которые сосредотачиваются на её наружной стороне, а не на внутренней.

Внутри клетки - "отрицательность", а снаружи - "положительность".

Такое положение вещей достигается с помощью трёх явлений: (1) поведения мембраны, (2) поведения положительных ионов калия и натрия и (3) соотношения химической и электрической силы.

1. Поведение мембраны

В поведении мембраны для потенциала покоя важны три процесса:

1) Обмен внутренних ионов натрия на наружные ионы калия. Обменом занимаются специальные транспортные структуры мембраны : ионные насосы-обменники . Таким способом мембрана перенасыщает клетку калием, но обедняет натрием.

2) Открытые калиевые ионные каналы . Через них калий может как заходить в клетку, так и выходить из неё. Он выходит в основном.

3) Закрытые натриевые ионные каналы . Из-за этого натрий, выведенный из клетки насосми-обменниками, не может вернуться в неё обратно. Натриевые каналы открываются только при особых условиях - и тогда потенциал покоя нарушается и смещается в сторону нуля (это называется деполяризацией мембраны, т.е. уменьшением полярности).

2. Поведение ионов калия и натрия

Ионы калия и натрия по-разному перемещаются через мембрану:

1) Через ионные насосы-обменники натрий насильно выводится из клетки, а калий затаскивается в клетку .

2) Через постоянно открытые калиевые каналы калий выходит из клетки, но может и возвращаться в неё обратно через них же.

3) Натрий "хочет" войти в клетку, но "не может", т.к. каналы для него закрыты.

3. Соотношение химической и электрической силы

По отношению к ионам калия между химической и электрической силой устанавливается равновесие на уровне - 70 мВ.

1) Химическая сила выталкивает калий из клетки, но стремится затянуть в неё натрий.

2) Электрическая сила стремится затянуть в клетку положительно заряженные ионы (как натрий, так и калий).

Формирование потенциала покоя

Попробую рассказать коротко, откуда берётся мембранный потенциал покоя в нервных клетках - нейронах. Ведь, как всем теперь известно, наши клетки только снаружи положительные, а внутри они весьма отрицательные, и в них существует избыток отрицательных частиц - анионов и недостаток положительных частиц - катионов.

И вот тут исследователя и студента поджидает одна из логических ловушек: внутренняя электроотрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а наоборот - из-за потери некоторого количества положительных частиц (катионов).

И поэтому сущность нашего рассказа будет заключаться не в том, что мы объясним, откуда берутся отрицательные частицы в клетке, а в том, что мы объясним, каким образом в нейронах получается дефицит положительно заряженных ионов - катионов.

Куда же деваются из клетки положительно заряженные частицы? Напомню, что это ионы натрия - Na + и калия - K + .

Натрий-калиевый насос

А всё дело заключается в том, что в мембране нервной клетки постоянно работают насосы-обменники , образованные специальными белками, встроенными в мембрану. Что они делают? Они меняют "собственный" натрий клетки на наружный "чужой" калий. Из-за этого в клетке оказывается в конце концов недостаток натрия, который ушёл на обмен. И в то же время клетка переполняется ионами калия, который в неё натащили эти молекулярные насосы.

Чтобы легче было запомнить, образно можно сказать так: "Клетка любит калий! " (Хотя об истинной любви здесь не может идти и речи!) Поэтому она и затаскивает калий в себя, несмотря на то, что его и так полно. Поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. Поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. Вот что делает любовь, пусть даже не настоящая!

Кстати, интересно, что клетка не рождается с потенциалом покоя в готовом виде. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от -10 до -70 mV, т.е. их мембрана становится более электроотрицательной, она поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках (ММСК) костного мозга человека искусственная деполяризация ингибировала дифференцировку клеток (Fischer-Lougheed J., Liu J.H., Espinos E. et al. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology 2001; 153: 677-85; Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. Journal of Physiology 1998; 510: 467-76; Sundelacruz S., Levin M., Kaplan D.L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. Plos One 2008; 3).

Образно говоря, можно выразиться так:

Создавая потенциал покоя, клетка "заряжается любовью".

Это любовь к двум вещам:

1) любовь клетки к калию,

2) любовь калия к свободе.

Как ни странно, но результат этих двух видов любви - пустота!

Именно она, пустота, создаёт в клетке отрицательный электрический заряд - потенциал покоя. Точнее, отрицательный потенциал создают пустые места, оставшиеся от убежавшего из клетки калия.

Итак, результат деятельности мембранных ионных насосов-обменников таков:

Натрий-калиевый ионный насос-обменник создаёт три потенциала (возможности):

1. Электрический потенциал - возможность затягивать внутрь клетки положительно заряженные частицы (ионы).

2. Ионный натриевый потенциал - возможность затягивать внутрь клетки ионы натрия (и именно натрия, а не какие-нибудь другие).

3. Ионный калиевый потенциал - возможновть выталкивать из клетки ионы калия (и именно калия, а не какие-нибудь другие).

1. Дефицит натрия (Na +) в клетке.

2. Избыток калия (K +) в клетке.

Можно сказать так: ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Именно из-за получившегося дефицита натрия в клетку теперь "полезет" этот самый натрий снаружи. Так всегда ведут себя вещества: они стремятся выравнять свою концентрацию во всём объёме раствора.

И в то же время в клетке получился избыток ионов калия по сравнению с наружной средой. Потому что насосы мембраны накачали его в клетку. И он стремится уравнять свою концентрацию внутри и снаружи, и поэтому стремится выйти из клетки.

Тут ещё важно понять, что ионы натрия и калия как бы "не замечают" друг друга, они реагируют только "на самих себя". Т.е. натрий реагирует на концентрацию натрия же, но "не обращает внимания" на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и "не замечает" натрий. Получается, что для понимания поведения ионов в клетке надо по-отдельности сравнивать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию калия внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это часто делается в учебниках.

По закону выравнивания концентраций, который действует в растворах, натрий "хочет" снаружи войти в клетку. Но не может, так как мембрана в обычном состоянии плохо его пропускает. Его заходит немножко и клетка его опять тут же обменивает на наружный калий. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Так вот он и выходит наружу через особые белковые дырочки в мембране (ионные каналы).

Анализ

От химического - к электрическому

А теперь - самое главное, следите за излагаемой мыслью! Мы должны перейти от движения химических частиц к движению электрических зарядов.

Калий заряжен положительным зарядом, и поэтому он, когда выходит из клетки, выносит из неё не только себя, но и "плюсики" (положительные заряды). На их месте в клетке остаются "минусы" (отрицательные заряды). Это и есть мембранный потенциал покоя!

Мембранный потенциал покоя - это дефицит положительных зарядов внутри клетки, образовавшийся за счёт утечки из клетки положительных ионов калия.

Заключение

Рис. Схема формирования потенциала покоя (ПП). Автор благодарит Попову Екатерину Юрьевну за помощь в создании рисунка.

Составные части потенциала покоя

Потенциал покоя - отрицательный со стороны клетки и состоит как бы из двух частей.

1. Первая часть - это примерно -10 милливольт, которые получаются от неравносторонней работы мембранного насоса-обменника (ведь он больше выкачивает "плюсиков" с натрием, чем закачивает обратно с калием).

2. Вторая часть - это утекающий всё время из клетки калий, утаскивающий положительные заряды из клетки. Он дает большую часть мембранного потенциала, доводя его до -70 милливольт.

Калий перестанет выходить из клетки (точнее, его вход и выход сравняются) только при уровне электроотрицательности клетки в -90 милливольт. Но этому мешает постоянно подтекающий в клетку натрий, который тащит с собой свои положительные заряды. И в клетке поддерживается равновесное состояние на уровне -70 милливольт.

Обратите внимание на то, что для создания потенциала покоя нужны затраты энергии. Эти затраты производятся ионными насосами, которые обменивают "свой" внутренний натрий (ионы Na +) на "чужой" внешний калий (K +). Вспомним, что ионные насосы являются ферментами АТФазами и расщепляют АТФ, получая из неё энергию на указанный обмен ионов разного типа друг на друга.Тут очень важно понять, что с мембраной "работают" сразу 2 потенциала: химический (концентрационный градиент ионов) и электрический (разность электрических потенциалов по разные стороны мембраны). Ионы перемещаются в ту или иную сторону под действием обеих этих сил, на которые и тратится энергия. При этом один из двух потенциалов (химический или электрический) уменьшается, а другой увеличивается. Разумеется, если рассматривать электрический потенциал (разность потенциалов) отдельно, то не будут учитываться "химические" силы, перемещающие ионы. И тогда может сложиться неверное впечатление о том, что энергия на движение ионо берётся как бы ниоткуда. Но это не так. Необходимо рассматривать обе силы: химическую и электрическую. При этом крупные молекулы с отрицательными зарядами, находящиеся внутри клетки играют роль "статистов", т.к. их не перемещают через мембрану ни химические, ни электрические силы. Поэтому эти отрицательные частицы обычно и не рассматривают, хотя они существуют и именно они обеспечивают отрицательную сторону разности потенциалов между внутренней и наружной сторонами мембраны. А вот шустрые ионы калия, как раз способны к перемещению, и именно их утечка из клетки под действием химических сил создаёт львиную долю электрического потенциала (разности потенциалов). Ведь именно ионы калия перемещают на наружную сторону мембраны положительные электрические заряды, будучи положительно заряженными частицами.

Так что всё дело в натрий-калиевом мембранном насосе-обменнике и последующем вытекании из клетки "лишнего" калия. За счёт потери положительных зарядов при этом вытекании внутри клетки нарастает электроотрицательность. Она-то и есть "мембранный потенциал покоя". Он измеряется внутри клетки и составляет обычно -70 мВ.

Выводы

Говоря образно, "мембрана превращает клетку в "электрическую батарейку" с помощью управления ионными потоками".

Мембранный потенциал покоя образуется за счёт двух процессов:

1. Работа калий-натриевого насоса мембраны.

Работа калий-натриевого насоса, в свою очередь, имеет 2 следствия:

1.1. Непосредственное электрогенное (порождающее электрические явления) действие ионного насоса-обменника. Это создание небольшой электроотрицательности внутри клетки (-10 мВ).

Виноват в этом неравный обмен натрия на калий. Натрия выбрасывается из клетки больше, чем поступает в обмен калия. А вместе с натрием удаляется и больше "плюсиков" (положительных зарядов), чем возвращается вместе с калием. Возникает небольшой дефицит положительных зарядов. Мембрана изнутри заряжается отрицательно (примерно -10 мВ).

1.2. Создание предпосылок для возникновения большой электроотрицательности.

Эти предпосылки - неравная концентрация ионов калия внутри и снаружи клетки. Лишний калий готов выходить из клетки и выносить из неё положительные заряды. Об этом мы скажем сейчас ниже.

2. Утечка ионов калия из клетки.

Из зоны повышенной концентрации внутри клетки ионы калия выходят в зону пониженной концентрации наружу, вынося заодно положительные электрические заряды. Возникает сильный дефицит положительных зарядов внутри клетки. В итоге мембрана дополнительно заряжается изнутри отрицательно (до -70 мВ).

Финал

Калий-натриевый насос создает предпосылки для возникновения потенциала покоя. Это - разность в концентрации ионов между внутренней и наружной средой клетки. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка клетки выравнять концентрацию ионов по калию приводит к потере калия, потере положительных зарядов и порождает электроотрицательность внутри клетки. Эта электроотрицательность составляет большую часть потенциала покоя. Меньшую его часть составляет непосредственная электрогенность ионного насоса, т.е. преобладающие потери натрия при его обмене на калий.

Видео: Мембранный потенциал покоя (Resting membrane potential)

Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны.Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». ВеличинаМПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембранаполяризована. Уменьшение величины МПП называютдеполяризацией, увеличение -гиперполяризацией, восстановление исходного значенияМПП -реполяризацией мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К + (в ряде клеток и для СГ), менее проницаема для Na + и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через мембрану.

Возникающая разность потенциалов препятствует выходу К + из клет­ки и при некотором ее значении наступает равновесие между выходом К + по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту. Мембранный потенциал, при ко­тором достигается это равновесие, называетсяравновесным потенци­алом. Его величина может быть рассчитана из уравнения Нернста:

10 В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания. На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление. Стадия покоя. Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ. Фаза деполяризации. В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его. Фаза реполяризации. В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые - открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны. потенциал действия Для более полного понимания факторов, являющихся причиной деполяризации и реполяризации, необходимо изучить особенности двух других типов транспортных каналов в мембране нервного волокна: электроуправляемых натриевых и калиевых каналов. Электроупавляемые натриевые и калиевые каналы. Необходимым участником процессов деполяризации и реполяризации во время развития потенциала действия в мембране нервного волокна является электроуправляемый натриевый канал. Электроуправляемый калиевый канал также играет важную роль в увеличении скорости реполяризации мембраны. Оба типа электроуправляемых каналов существуют дополнительно к Na+/K+ -насосу и каналам К*/Na+-утечки. Электроуправляемый натриевый канал. В верхней части рисунка показан электроуправляемый натриевый канал в трех различных состояниях. Этот канал имеет двое ворот: одни вблизи наружной части канала, которые называют активационными воротами, другие - у внутренней части канала, которые называют инактивационными воротами. В верхней левой части рисунка изображено состояние этих ворот в покое, когда мембранный потенциал покоя равен -90 мВ. В этих условиях активационные ворота закрыты и препятствуют поступлению ионов натрия внутрь волокна. Активация натриевого канала. Когда мембранный потенциал покоя смещается в направлении менее отрицательных значений, поднимаясь от -90 мВ в сторону нуля, на определенном уровне (обычно между -70 и -50 мВ) происходит внезапное конформационное изменение актива-ционных ворот, в результате они переходят в полностью открытое состояние. Это состояние называют активированным состоянием канала, при котором ионы натрия могут свободно входить через него внутрь волокна; при этом натриевая проницаемость мембраны возрастает в диапазоне от 500 до 5000 раз. Инактивация натриевого канала. В верхней правой части рисунке показано третье состояние натриевого канала. Увеличение потенциала, открывающее активационные ворота, закрывает инактивационные ворота. Однако инактивационные ворота закрываются в течение нескольких десятых долей миллисекунды после открытия активационных ворот. Это значит, что конформационное изменение, приводящее к закрытию инактивационных ворот, - процесс более медленный, чем конформационное изменение, открывающее активационные ворота. В результате через несколько десятых долей миллисекунды после открытия натриевого канала инактивационные ворота закрываются, и ионы натрия не могут более проникать внутрь волокна. С этого момента мембранный потенциал начинает возвращаться к уровню покоя, т.е. начинается процесс реполяризации. Существует другая важная характеристикая процесса инактивации натриевого канала: инактивационные ворота не открываются повторно до тех пор, пока мембранный потенциал не вернется к значению, равному или близкому к уровню исходного потенциала покоя. В связи с этим повторное открытие натриевых каналов обычно невозможно без предварительной реполяризации нервного волокна.

13Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые. Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декре-ментное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к«-». В месте выхода кругового тока повышается проницаемость плазматической мемб-раны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона. В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Существует три закона проведения раздражения по нервному волокну. Закон анатомо-физиологической целостности. Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. Закон изолированного проведения возбуждения. Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмя-котных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе. В мякотных нервных волокнах роль изолятора выполняет мие-линовая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки. В безмякотных нервных волокнах возбуждение передается изолированно. Закон двустороннего проведения возбуждения. Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и цен-тробежно.

14 Синапсы – это специализированная структура, которая обеспечивает передачу нервного импульса из нервного волокна на эффекторную клетку – мышечное волокно, нейрон или секреторную клетку.

Синапсы – это места соединения нервного отростка (аксона) одного нейрона с телом или отростком (дендритом, аксоном) другой нервной клетки (прерывистый контакт между нервными клетками).

Все структуры, обеспечивающие передачу сигнала с одной нервной структуры на другую – синапсы .

Значение – передает нервные импульсы с одного нейрона на другой => обеспечивает передачу возбуждения по нервному волокну (распространение сигнала).

Большое количество синапсов обеспечивает большую площадь для передачи информации.

Строение синапса:

1. Пресинаптическая мембрана - принадлежит нейрону, ОТ которого передается сигнал.

2. Синаптическая щель , заполненная жидкостью с высоким содержанием ионов Са.

3. Постсинаптическая мембрана - принадлежит клеткам, НА которые передается сигнал.

Между нейронами всегда существует перерыв, заполненный межтканевой жидкостью.

В зависимости от плотности мембран, выделяют:

- симметричные (с одинаковой плотностью мембран)

- асимметричные (плотность одной из мембран выше)

Пресинаптическая мембрана покрывает расширение аксона передающего нейрона.

Расширение - синаптическая пуговка/синаптическая бляшка .

На бляшке - синаптические пузырьки (везикуль).

С внутренней стороны пресинаптической мембраны – белковая/гексогональная решетка (необходима для высвобождения медиатора), в которой находится белок - нейрин . Заполнена синаптическими пузырьками, которые содержат медиатор – специальное вещество, участвующее в передаче сигналов.

В состав мембраны пузырьков входит - стенин (белок).

Постсинаптическая мембрана покрывает эффекторную клетку. Содержит белковые молекулы, избирательно чувствительные к медиатору данного синапса, что обеспечивает взаимодействие.

Эти молекулы – часть каналов постсинаптической мембраны + ферменты (много), способные разрушать связь медиатора с рецепторами.

Рецепторы постсинаптической мембраны.

Постсинаптическая мембрана содержит рецепторы, обладающие родством с медиатором данного синапса.

Между ними находится снаптическая щель . Она заполнена межклеточной жидкостью, имеющей большое количество кальция. Обладает рядом структурных особенностей – содержит белковые молекулы, чувствительные к медиатору, осуществляющему передачу сигналов.

15 Синаптическая задержка проведения возбуждения

Для того, чтобы возбуждение распространилось по рефлекторной дуге затрачивается определенное время. Это время состоит из следующих периодов:

1. период временно необходимый для возбуждения рецепторов (рецептора) и для проведения импульсов возбуждения по афферентным волокнам до центра;

2. период времени, необходимый для распространения возбуждения через нервные центры;

3. период времени, необходимый на распространение возбуждения по эфферентным волокнам до рабочего органа;

4. латентный период рабочего органа.

16 Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут подходить сотни и тысячи импульсов по разным терминалям. Вместе с тем число дошедших до нейрона импульсов определяется пресинаптическим торможением. Торможение латеральных путей обеспечивает выделение существенных сигналов из фона. Блокада торможения ведет к широкой иррадиации возбуждения и судорогам, например при выключении пресинаптического торможения бикукулином.

Нейрон ограничен липо-протеиновой(жиро-белковой) мембраной. Мембранный потенциал нейрона оказывает влияние на процессы трансмембранного обмена веществ. Мембранный потенциал покоящейся клетки называется потенциалом покоя.
Скорость диффузии веществ через мембрану зависит главным образом от размера молекул и их относительной растворимости в жирах.
В мембранах клеток существуют белки-транслоказы. Взаимодействуя со специфическим лигандом, они обеспечивают его диффузию (транспорт из области большей концентрации в область меньшей) через мембрану.

Специальные молекулярные рецепторы, находящиеся на мембране, могут соединяться с сигнальными (управляющими) веществами, вследствие чего может меняться состояние мембраны и всей клетки. Молекулярные рецепторы запускают биохимические реакции в ответ на соединение с ними лагандов (управляющих веществ).

каталитическая ферментативная активность. Ферменты могут быть встроены в мембрану или связаны с её поверхностью (как внутри, так и снаружи клетки), и там они осуществляют свою ферментативную деятельность.

Как видим, основное свойство мембраны – это её проницаемость по отношению к различным веществам.

Легче и лучше всего через мембрану пассивно проникают жирорастворимые неполярные мелкие молекулы. Так, легче всего с помощью простой диффузией проходят через мембрану малые неполярные молекулы, такие как О2, стероиды, тиреоидные гормоны, а также жирные кислоты. Несколько медленнее диффундируют через липидный слой малые полярные незаряженные молекулы: СО2, NH3, Н2О, этанол, мочевина. Диффузия глицерола идёт уже значительно медленнее, а глюкоза практически не способна самостоятельно пройти через мембрану. Для всех заряженных молекул, независимо от размера, липидная мембрана практически непроницаема. Таким образом, свободно проникать сквозь мембрану в клетку и обратно могут только жирорастворимые вещества, способные растворяться в жировом (липидном) слое мембраны. Транспорт других веществ через мембрану требует особых механизмов. Какие же вещества необходимо протаскивать через мембрану «насильно»? Это все полярные молекулы, не растворимые в жирах: молекулы воды, ионы (электролиты), а также более крупные молекулы питательных веществ, таких как глюкоза и аминокислоты.

Для транспорта в клетку веществ, слабо способных к диффузии через липидный слой мембраны, необходимы специальные транспортные структуры.

Виды транспортных структур мембраны:



1. Ионные каналы – специальные поры (дырочки) в мембране, образованные канальными белками, позволяющие ионам проходить через мембрану в обоих направлениях: как внутрь, так и наружу.

2. Транслоказы – специальные мембранные белки, облегчающие переход вещества через мембрану за счёт своего временного связывания с диффундирующим веществом. Не требуют энергии, работают в обоих направлениях в зависимости от концентрации переносимого вещества.

3. Транспортёры – белковые структуры, насильно протаскивающие определённые вещества сквозь клеточную мембрану в определённом направлении с затратами энергии. Ионные насосы – это транспортёры ионов. По способу использования энергии для своей работы транспортёры можно разделить на «симпортные» и «антипортные». Симпортные транспортёры используют совместный транспорт в одном направлении двух веществ: одно из них должно иметь большую потенциальную энергию для движения через мембрану. Например, симпорт в клетку с помощью ионов натрия глюкозы, или симпорт ионов кальция с помощью ионов натрия. Антипортные транспортёры (обменники) используют встречный транспорт двух веществ с разной потенциальной энергией диффузии. Так работает, например, натрий-калиевый ионный насос.

Итак, перенос веществ через клеточную мембрану происходит различными путями.

Механизмы транспорта веществ через мембрану:

1. Простая диффузия жирорастворимых (гидрофобных) веществ через жировой слой мембраны. Это пассивный процесс под действием градиента (перепада) концентрации вещества по разные стороны мембраны. (Смотрите видео: пассивный транспорт через мембрану).

2. Неуправляемая диффузия (неуправляемый пассивный перенос) водорастворимых веществ через постоянно открытые ионные каналы мембраны.

3. Управляемая диффузия (управляемый пассивный перенос) водорастворимых веществ через управляемые ионные каналы мембраны.



4. Активный транспорт водорастворимых веществ с помощью специальных белковых транспортных структур (транспортёров) за счёт использования энергии расщепления АТФ.

Одна из самых главных транспортных структур мембраны – это фермент АТФаза. АТФазы разных видов транспортируют через мембрану ионы. Они переносят их как внутрь клетки, так и, наоборот, наружу.

Название АТФаза означает, что это фермент, нацеленный на расщепление АТФ (аденозинтрифосфатаза)

6. Потенциал действия нейрона. Изменения возбудимости при возбуждении.
Потенциал действия - это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала покоя вследствие перемещения ионов в клетку и из клетки и способный распространяться без затухания. ПД обеспечивает передачу сигналов между нервными клетками, между нервными центрами и рабочими органами.

Потенциал действия - это тот электрический импульс, которой доставляет информацию от рецепторов к мозгу, и с помощью которого мозг управляет телом. Для его существования необходимы особо устроенные клетки, нейроны, мембраны которых облеплены с обеих сторон положительно и отрицательно заряженными ионами, которые только и ждут сигнала, чтобы этот электрический импульс пронести по всей длине клетки. Основным местом существования потенциала действия является аксон нейрона. Дендриты некоторых типов нейронов также способны проводить электрический импульс.

Изменение возбудимости при возбуждении. При возбуждении возбудимость изменяется по фазам.
1) фаза первичной экзальтации - возбудимость выше нормы, реакция на порошковый и подпороговый раздражитель
2) фаза абсолютной рефрактерности - ответная реакция на раздражитель отсутствует, что обусловлено инактивацией натриевых каналов
3) фаза относительной рефрактерности - возбудимость восстанавливается, и ответная реакция становится возможной только при действии раздражителя надпороговой силы, что обусловлено выходящим калиевым током
4) фаза вторичной экзальтации - ответная реакция на подпороговый раздражитель
5) фаза субнормальной возбудимости - возбудимость ниже нормы, ответ возможен на действие надпороговой силы.

Восстановлением исходного положения «натрий снаружи, калий внутри» занимается натрий-калиевый насос, выводящий из клетки три Na+ и одновременно проносящий внутрь два К+.

Как видно, всё очень просто, главное – открыть нужные ионные каналы. Стимул-управляемые ионные каналы открываются раздражителем (стимулом). Хемо-управляемые ионные каналы открываются медиатором (возбуждающим или тормозным). Точнее, в зависимости от того, на какие каналы (натриевые, калиевые или хлорные) будет действовать медиатор, таков будет и локальный потенциал – возбуждающий или тормозный. А медиатор как для возбуждающих локальных потенциалов, так и для тормозных, может быть одним и тем же, тут важно, какие ионные каналы будут связываться с ним своими молекулярными рецепторами – натриевые, калиевые или хлорные.

7. Нервные волокна, их классификация. Особенности проведения возбуждения по безмиелиновым и миелинизированным волокнам.


Нервные волокна – это отростки нервных клеток, окруженные оболочками из нейроглиальных клеток.
По наличию (или отсутствию) миелиновой оболочки нервные волокна делят на миелиновые и безмиелиновые.
Классификация нервных волокон по Ллойду – Ханту учитывает диаметр волокна и скорость проведения импульса, но применяется только для чувствительных волокон.
Классификация нервных волокон по Эрлангеру – Гассеру основана на исследовании составного потенциала действия смешанного периферического нерва (например, седалищного).
Особенности распространения возбуждения по безмиелиновым волокнам:

1. Возбуждение распространяется непрерывно и все волокно сразу охватывается возбуждением.

2. Возбуждение распространяется с небольшой скоростью.

3. Возбуждение распространяется с декриментом (уменьшение силы тока к концу нервного волокна).

По безмиелиновым волокнам возбуждение проводится к внутренним органам от нервных центров.
Особенности распространения возбуждения по миелиновым волокнам:

1. Распространение ПД в миэлинизированных нервных волокнах осуществляется сальтаторно - скачкообразно от перехвата к перехвату, т.е. возбуждение (ПД) как бы «перепрыгивает» через участки нервного волокна, покрытые миелином, от одного перехвата к другому и все волокно сразу не охватывается возбуждением.

2. Возбуждение распространяется с большой скоростью.

По миелиновым волокнам возбуждение распространяется от анализаторов к ЦНС, к скелетным мышцам, т.е. там, где требуется высокая скорость ответной реакции.
ГЛАВНОЕ ОТЛИЧИЕ В ТОМ, ЧТО ПО МИЕЛИНОВЫМ ВОЛОКНАМ ПРОВОДИТСЯ НАМНОГО БЫСТРЕЕ.

Безмиелиновые нервные волокна - один слой швановских клеток, между ними - щелевидные пространства. Клеточная мембрана на всем протяжении контактирует с окружающей средой. При нанесении раздражения возбуждение возникает в месте действия раздражителя. Безмиелиновые нервные волокна обладают электрогенными свойствами (способностью генерировать нервные импульсы) на всем протяжении.

Миелиновые нервные волокна - покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов.

Перехваты Ранвье выполняют функцию ретрансляторов (генерируют и усиливают нервные импульсы).

8. Законы проведения возбуждения по нерву.
1)Возбуждение возможно в любом направлении
2) Проведения возбуждения возможно только по целому нерву (не поврежденному)
Закон изолированного проведения возбуждения по нервному волокну. В составе нерва возбуждение по нервному волокну распространяется изолированно, без перехода на другие волокна, имеющиеся в составе нерва.

Закон двустороннего проведения возбуждения по нервному волокну.Нервы обладают двусторонней проводимостью, т.е. возбуждение может распространяться в любом направлении от возбужденного участка (места его возникновения), т. е., центростремительно и центробежно. Это можно доказать, если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение. Возбуждение зафиксируют электроды по обе стороны от места раздражения. Естественным направлением распространения возбуждения является: в афферентных проводниках - от рецептора к клетке, в эфферентных - от клетки к рабочему органу.

Закон анатомической и физиологической целостности нервного волокна.Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность, т.е. передача возбуждения возможна только по структурно и функционально не измененному, неповрежденному нерву (законы анатомической и физиологической целостности).

Закон изолированного проведения возбуждения по нервному волокну.В составе нерва возбуждение по нервному волокну распространяется изолированно, без перехода на другие волокна, имеющиеся в составе нерва. Изолированное проведение возбуждения обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон. Поэтому основная часть тока, возникающего между возбужденным и невозбужденным участками нервного волокна, проходит по межклеточным щелям, не действуя на рядом расположенные нервные волокна. Изолированное проведение возбуждения имеет важное значение. Нерв содержит большое количество нервных волокон (чувствительных, двигательных, вегетативных), которые иннервируют различные по структуре и функциям эффекторы (клетки; ткани, органы). Если бы возбуждение внутри нерва распространялось с одного нервного волокна на другое, то нормальное функционирование органов было бы невозможно.

9. Синапсы. Центральные и периферические синапсы.
Си́напс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Периферические синапсы: нервно-мышечные

нейросекреторные (аксо-вазальные)

рецепторно-нейрональные
Центральные синапсы
аксо-дендритические - с дендритами, в том числе

аксо-шипиковые - с дендритными шипиками, выростами на дендритах;

аксо-соматические - с телами нейронов;

аксо-аксональные - между аксонами;

дендро-дендритические - между дендритами;

Центральные синапсы

В нервной системе синапсы об­разуются между отростками разных нейронов, а также между от­ростками и телами клеток. Соответственно их называют:

      • Аксо-аксональными,
      • Аксо-дендритными,
      • Аксо-сома­тическими,
      • Дендро-соматическими,
      • Дендро-дендритными.

Количество синапсов на нейроне очень большое и достигает нескольких тысяч.

Рис.3.4. Структура аксосоматического синапса.

В качестве примера может быть рассмотрен аксо-соматический синапс (между аксоном одной нервной клетки и телом другой), структура которого показана на рис.3.4. Аксон, подходя к телу другого нейрона, образует расширение, называемое пресинаптическим окончанием или терминалью. Мембрана такого окончания на­зывается пресинаптической. Под ней располагается синаптическая щель, ширина которой составляет 10-50 мкм. За синаптической щелью лежит мембрана тела нейрона, называемая в области синапса постсинаптической.

1 - аксон,
2 - синаптическая пуговка,
3 - пресинаптическая мембрана,
4 - лостсинаптическая мембрана,
5 - рецепторы постсинаптической мембраны,
6 - синаптические пузырьки с медиатором,
7 - кванты медиатора в синаптической щели,
8 - митохондрии.
СаСБ - кальцийсвязывэющий белок.

Периферические синапсы

Периферические синапсы образованы между окончаниями эфферентного нерва и мембраной эффектора. Для соматических рефлексов это синапсы между двигательным нер­вом и скелетной мышцей, поэтому их еще называют нервно-мы­шечные синапсы (рис.3.7). Благодаря форме синаптического образо­вания они получили название концевых пластинок. Строение и ос­новные свойства концевых пластинок в общих чертах подобны цент­ральным синапсам. Медиатором в нервно-мышечных синапсах слу­жит ацетилхолин, выделяемый квантами. Разрушение медиатора в синаптической шели происходит за счет фермента холинэстеразы. Рецепторы постсинап­тической мембраны относятся к никотиночувствительному типу (н-холинорепепторы), конкурентно блокируются ядом кураре, что пре­кращает нервно-мышечную передачу. Образуемый на постсинапти­ческой мембране медиатор-рецепторный комплекс активирует хемо-чувствительные рецепторуправляемые Na-каналы, вызывает натрие­вый ток внутрь клетки, деполяризацию и формирование потенциала, называемого потенциалом концевой пластинки (ПКП), являющегося аналогом ВПСП центральных синапсов.

Важнейшим отличительным свойством нервно-мышечных синап­сов от центральных является высокая амплитуда ПКП , всегда пре­вышающая критический уровень деполяризации мембраны, поэтому ПКП не требует суммации как ВПСП, а каждый ПКП ведет к генерации потенциала действия, возбуждению и сокращению мы­шечной клетки.

Рис.3.7. Структура нервно-мышечного синапса.

Возможно это связано с тем, что постсинаптическая мембрана имеет многочисленные складки, существенно увеличива­ющие поверхность взаимодействия медиатора с рецепторами (рис.3.7).

1 - пресинаптическая концевая пластинка,
2 - синаптические пузырьки с медиатором,
3 - митохондрии,
4 - синапгическая щель с квантами медиатора,
5 - складчатая постсинаптическая мембрана,
6 - рецепторы постсинаптической мембраны,
7 - саркоплазматический ретикулум,
8 - сократительный аппарат (миофибриллы) мышечной клетки.

10. Синапсы с электрическим механизмом передачи сигнала. Свойства.
Электрический синапс, или эфапс - электрический щелевой контакт между двумя примыкающими нейронами или иными возбудимыми клетками, которая образуется в виде узкой щели, содержащей характерные только для этого типа контактов элементы

Что такое электрический синапс? Электрические синапсы – это межклеточные образования, с помощью которых обеспечивается передача импульса возбуждения. Данный процесс происходит за счет появления электрического тока между двумя отделами под названием пресинаптический и постсинаптический.

Важная работа синапсов электрического типа Свойства электрических синапсов заключаются в следующем:

Быстрое действие (гораздо превосходит активность в синапсах химического типа); ----слабые следовые эффекты (суммации от последовательных импульсов практически нет);

Надежная передача возбуждения;

Высокая пластичность;

Передача в одну и в обе стороны.

Особенности структуры.

11. Синапсы с химическим механизмом передачи сигнала. Свойства.
Химический синапс - особый тип межклеточного контакта между нейроном и клеткой-мишенью. У данного типа синапса роль посредника (медиатора) передачи выполняет химическое вещество.

Синаптические контакты могут быть между аксоном и дендритом (аксодендритические), аксоном и сомой клетки (аксосоматические), аксонами (аксоаксональные), дендритами (дендродендритические), дендритами и сомой клетки.

В покое медиатор попадает в синаптическую щель постоянно, но в малом количестве. Под влиянием пришедшего возбуждения количество медиатора резко возрастает. Затем медиатор перемещается к постсинаптической мембране, действует на специфические для него рецепторы и образует на мембране комплекс медиатор-рецептор. Данный комплекс изменяет проницаемость мембраны для ионов К+ и Na+, в результате чего изменяется ее потенциал покоя.