Омыляемые и неомыляемые липиды. Особенности разных видов липидных соединений и их функции Неомыляемые жиры

Неомыляемые липиды не гидролизуются в кислой и щелочной среде. Обычно их подразделяют на 2 больших подкласса:

1.Терпены (мирцен,каротиноиды,каротин и др.).

2.Стероиды (холестерин и др.).

Терпены присутствуют в основном в тканях растений, тогда как стероиды присутствуют, главным образом в животных тканях. Стероиды и терпены построены из одинаковых изопреновых фрагментов и относятся к категории изопреноидов.

Терпены

К терпенам относят группу соединений, включающую себя как полиизопреновые углеводороды, так и их кислородсодержащие производные – спирты, альдегиды и кетоны. Сами углеводороды называют терпеновыми.

Общая формула терпеновых углеводородов соответствует выражению – (С 5 Н 8) n . Они могут иметь как циклическое, так и ациклическое строение. Терпены состоящие из 2-х изопреновых единиц называют монотерпенами, 3-х - сесквитерпенами, 4-х – дитерпенами. Примером ациклических терпенов могут служить мирцен, а также родственные ему спирт и альдегид – гераниол и цитраль, выполняющие функции феромонов у рабочих пчел.

Среди терпенов, однако, наиболее распространены моно- и бициклические представители. Многие из них либо непосредственно находят применение в медицине, либо служат сырьем для синтеза многих лекарственных средств. По своему строению такие терпены сходны с некоторыми циклическими предельными углеводородами:


Типичными представителями моноциклических терпенов являются (±)-лимонен (дипентен), содержащийся в лимонном масле, скипидаре и масле тмина и имеющий скелет ментана, а также ментол, содержащийся в эфирном масле перечной мяты и обладающий антисептическим, болеутоляющим и успокаивающим действием.

Лимонен получают из изопрена в результате реакции диенового синтеза при его нагревании:

При полной гидратации дипентена в кислой среде согласно правилу Марковникова образуется двухатомный спирт терпин,препарат которого в виде гидрата используется в качестве отхаркивающего средства при хроническом бронхите.

Замещенные дипентены, например каннабидиол представляют собой психоактивные вещества и являются действующим началом гашиша (марихуаны):

Примерами бициклических терпенов являются α-пинен и камфора.

Камфора издавна применяется в медицине как стимулятор сердечной деятельности. Она способна вступать во взаимодействие с бромом по α-положению относительно карбонильного атома углерода. При этом образуется бромкамфора, которая улучшает деятельность сердца и оказывает успокаивающее действие на ЦНС. Особую группу терпенов составляют каротиноиды – растительные пигменты. Некоторые из них способны выполнять функции витаминов. Каротиноиды также участвуют в процессе фотосинтеза. Большинство каротиноидов относится к тетратерпенам. Их молекулы содержат значительное количество двойных связей, что придает каротиноидам специфическую окраску. Типичными их представителями являются α-, β- и γ-каротины, предшественники витаминов группыА.

Стероиды, стерины.

Стероиды широко распространены в природе и выполняют в организме человека самые разнообразные функции. Стероидная природа характерна для желчных кислот, мужских и женских половых гормонов, гормонов коры надпочечников. Холестерин входит в состав клеточных мембран и определяет такое их важное свойство как микровязкость. В настоящее время известно более 20 000 стероидов. Стероиды имеют циклическое строение. В основе их структуры лежит структура циклопентанопергидрофенантрена (стерана), состоящего из трех конденсированных циклогексановых колец (А,В,С) и циклопентанового кольца D.
Типичными представителями стероидов являются холестерол (стерины), холевая кислота (желчные кислоты), эстрадиол и тестостерон (половые гормоны), кортикостерон (гормон коры надпочечников глюкокортикоидного ряда). Холестерол – наиболее распространенный представитель стеринов. Особенностью его структуры является наличие двойной связи между С5 и С6 атомами углерода.


Очищенный холестерин – белое кристаллическое оптически активное вещество. В организме встречается как в свободном состоянии, так и в виде сложного эфира. Из общего количества холестерина только 20% его поступает с пищей. Основная его часть синтезируется в организме.

Ниже приводятся формулы некоторых наиболее важных желчных кислот и стероидных гормонов.


Табл.8 Классификация стероидов по величине углеводородного радикала R у С-17

Несколько менее распространены липиды с простой эфирной связью – плазмалогены:

Химические свойства .

Гидролиз протекает как в кислой, так и щелочной средах (омыление) и представляет собой обычную реакцию гидролиза сложного эфира. Гидролиз протекает ступенчато и продуктами полного гидролиза, являются глицерин и смесь высших жирных кислот.

Например:

Реакции окисления липидов и высших карбоновых кислот протекают с участием двойных связей и образуются низшие карбоновые кислоты, в частности масляная кислота (прогоркание жира). Окисление также происходит в клеточных мембранах с участием АФК.

Обмен липидов

Превращения липидов в процессе пищеварения и всасывание. Липиды - важная составная часть пищи. Взрослому человеку требуется от 70 до 145г жира в сутки в зависимости от трудовой деятельности, пола, климатических условий. Причем необходимы как животные, так и растительные жиры. Липиды являются высокими энергетическими веществами, поэтому за их счет удовлетворяется до 25-30% потребности человеческого организма в энергетическом материале. Кроме того, в составе животных жиров в организм поступают жирорастворимые витамины А, В, К и Е, растительные жиры богаты непредельными жирными кислотами, являющимися предшественниками простагландинов, исходным материалом для синтеза организмом фосфолипидов и других веществ.

Переваривание жира начинается в желудке, где находится малоактивный фермент желудочная липаза, однако ее роль в гидролизе пищевых триглицеридов у взрослых людей невелика. Во-первых, в желудочном соке взрослого человека и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока далек от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы 5,5-7,5). В-третьих, в желудке отсутствуют условия для эмульгирования триглицеридов, а липаза может активно действовать только на триглицериды, находящиеся в форме эмульсии. Поэтому у взрослых людей не эмульгированные триглицериды составляющие основную массу пищевого жира, проходят через желудок без особых изменений. Вместе с тем расщепление триглицеридов в желудке играет важную роль в пищеварении у детей, особенно грудного возраста. Слизистая оболочка корня языка и примыкающей к нему области глотки ребенка грудного возраста секретирует собственную липазу в ответ на сосательные и глотательные движения. Эта липаза получила название лингвальной. Активность лингвальной липазы не успевает проявиться в ротовой полости,основным местом ее действия является желудок. Оптимум рН лингвальной липазы в пределах 4,0-4,5; он близок к величине рН желудочного сока у грудных детей.

Расщепление триглицеридов в желудке взрослого человека невелико, но оно в определенной степени облегчает последующее переваривание в кишечнике. Даже незначительное по объему расщепление триглицеридов в желудке приводит к появлению свободных жирных кислот, которые подвергаясь всасыванию в желудке, поступают в кишечник и способствуют там эмульгированию жиров, облегчая таким образом воздействие на нихлипазы панкреатического сока.

После того как химус попадает в двенадцатиперстную кишку, прежде всего происходит нейтрализация попавшей в кишечник с пищей соляной кислоты желудочного сока бикарбонатами, содержащимися в панкреатическом и кишечном соках. Выделяющиеся при разложении бикарбонатов пузырьки углекислого газа способствуют хорошему перемешиванию пищевой кашицы с пищеварительными соками. Одновременно начинается эмульгирование жира. Наиболее мощное эмульгирующее действие на жирыоказывают соли желчных кислот, попадающие в двенадцатиперстнуюкишку с желчью в виде натриевых солей. Большая часть желчных кислот конъюгирована с глицином или таурином. По химической природе желчные кислоты являются производными холановой кислоты:

В желчи в основном содержится холевая, дезоксихолевая и хенодезоксихолевая кислоты:


Желчные кислоты присутствуют в желчи в конъюгированной форме, т.е. в виде гликохолевой, гликодезоксихолевой, гликохенодезоксихолевой (около 2/3-4/5 всех желчных кислот) или таурохолевой, тауродезоксихолевой и таурохенодексихолевой(около 1/5-1/3 всех желчных кислот). Эти соединения иногда еще называют парными желчными кислотами, т.к. они состоят из двух компонентов – желчной кислоты и глицина или таурина:

таурохолевая

гликохолевая

Считают, что только комбинация соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид придает необходимую степень эмульгирования жира. Соли желчных кислот резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

Основное расщепление липидов происходит в кишечнике, в первую очередь в двенадцатиперстной кишке. В этот отдел кишечника поступает сок поджелудочной железы, содержащий очень активную липазу. Сюда же поступает из желчного пузыря желчь, составные компоненты которой (желчные кислоты) необходимы для переваривания липидов. Это связано с тем, что желчные кислоты-холевая (преобладает в желчи человека), дезоксихолевая, литохолевая, хенодезоксихолевая, таурохолевая и гликохолевая -представляют собой поверхностно-активные вещества, способствующие эмульгированию жиров, что является важнейшим условием их последующего ферментативного расщепления.

Пройдя через барьер слизистой оболочки кишечника, желчные кислоты в связанном состоянии с липидами отделяются от последних и по венам кишечника через портальный кровоток возвращаются в печень, а затем с желчью в двенадцатиперстную кишку.

Образование эмульсии жиров в кишечнике может происходить и под влиянием мелких пузырьков СО 2 , выделяющегося при нейтрализации соляной кислоты пищевой кашицы бикарбонатами поджелудочного и кишечного сока. Способствуют эмульгированию и соли жирных кислот (мыла), возникающие при гидролизе липидов. Но основная роль в эмульгировании жиров принадлежит желчным кислотам.

В результате описанных процессов образуется очень тонкая жировая эмульсия, диаметр частиц которой не превышает 0,5 мкм. Такие эмульгированные жиры способны самостоятельно проходить через стенку кишечника и попадать в лимфатическую систему. Однако большая часть эмульгированного жира всасывается после гидролитического расщепления его панкреатическими липазами. Последние образуются в поджелудочной железе в виде неактивных проферментов, которые переходят в активную форму при участии мыльных кислот.

Основная масса липидов пищи представлена триацилглицеринами, меньше фосфолипидами и стероидами. Гидролиз триацилглицеринов идет постепенно. Сначала расщепляются эфирные связи в I м и 3-м положениях, т.е. внешние сложноэфирные связи:

Эти реакции осуществляют липазы , специфичные в отношении 1,3-эфирных связей триацилглицерина. Связи во 2-м положении гидролизуют другие липазы:

Связи 1 и 3 гидролизуются быстро, а потом идет медленный гидролиз 2-моноглицерида. 2-Моноглицерид может всасываться стенкой кишечника и использоваться на ресинтез триацилглицеринов, специфичных для данного вида организмов, уже в самой слизистой тонкого кишечника.

Кроме липаз в соке поджелудочной железы присутствуют эстеразы, гидролизующие преимущественно эфиры жирных кислот с короткой цепью и эфиры холестерина. Эти эстеразы тоже активны только в присутствии желчных кислот.

Пищеварительные липазы кроме человека и млекопитающих животных обнаружены и исследованы у рыб, некоторых беспозвоночных. Однако, как правило, у большинства видов беспозвоночных и костистых рыб липолитическая активность в пищеварительных соках примерно в 1000 раз ниже, чем в панкреатическом соке млекопитающих. Не следует забывать, что жиры могут усваиваться также путем фагоцитоза и сохраняться без предварительного гидролиза до тех пор, пока не прогидролизуются внутриклеточными липазами и, таким образом, примут участие в синтезе липидов в процессах образования энергии.

Расщепление фосфолипидов происходит при участии ряда ферментов: фосфолипаз А 1 , А 2 , С, D и лизофосфолипазы.

Фосфолипаза А 1 гидролизует связь в 1-м положении. Фосфолипаза А 2 ,образующаяся в поджелудочной железе, поступает в полость тонкого кишечника в неактивной форме и только под действием трипсина активируется. Под действием фосфорилапазы А 2 отщепляется жирная кислота во 2-м положении. В результате ее действия образуются лизофосфолипиды, которые вызывают разрушение триглицеридов крови. Кроме панкреатического сока фосфолипаза А 2 содержится в яде рептилий, беспозвоночных (особенно членистоногих - пчел, скорпионов, муравьев), а также у кишечнополостных. Известны так|же внутриклеточные фосфолипазы А 2 (в лизосомах, микросомах, митохондриях).

В организме ее действие компенсируется фосфорилазой А 1 , которая отщепляет второй кислотный остаток. Затем отщепляется азотистое основание под действием фосфорилазы D и фосфорная кислота – фосфорилазой С.

Конечными продуктами распада фосфолипидов являются жирные кислоты, глицерин, азотистое основание и фосфорная кислота.

Стериды, подвергаясь действию гидролитических ферментов типа холестераз,расщепляются в кишечнике с образованием спирта холестерола или эргостерола и соответствующей жирной кислоты. Холестеразы продуцируются поджелудочной железой и активны только в присутствии солей желчных кислот.

Таким образом, образующаяся в результате гидролиза липидов смесь содержит анионы жирных кислот, моно-, ди- и триацилглицерины, хорошо эмульгированные солями жирных кислот и мылами, глицерин, холин, этаноламин и другие полярные компоненты липидов. Исследования с мечеными триацилглицеринами показали, что около 40% жиров пищи гидролизуется полностью до глицерина и жирных кислот, 3-10% всасываются без гидролиза в форме триацилглицеринов, а остальные гидролизуются частично, главным образом до 2-моноацилглицеринов. Глицерин водорастворим и вместе с жирными кислотами, имеющими короткие углеродные цепи (С<10), всасывается свободно через стенку кишечника и через портальную систему кровообращения поступает в печень.

Для всасывания жирных кислот с длинной цепью (С >10), моноглицеридов и холестерина необходимы желчные кислоты.Соединяясь с вышеперечисленными соединениями, желчные кислоты образуют растворимые комплексы или мицеллы- холеиновые комплексы,которые легко всасываются в эпителий кишечника. Так как рН в тонком кишечнике слабощелочная, желчные кислоты функционируют здесь в форме своих солей. Особую роль при этом играют такие желчные кислоты, как таурохолевая и гликохолевая. Лучше перевариваются и всасываются липиды, находящиеся в жидком состоянии, при температуре тела. Липиды, у которых точка плавления существенно выше температуры тела, плохо перевариваются и всасываются.

Фосфорная кислота, образующаяся при гидролизе фосфолипидов, всасывается в виде натриевых и калиевых солей, а азотистые основания - холин, этаноламин и серин - всасываются при участии нуклеотидов (ЦДФ-производных). Некоторая избирательность проявляется слизистой оболочкой кишечника в отношении стероидов, особенно растительного происхождения. Среди основных стероидов пищи только холестерин легко проникает через стенки кишечника. С такой же легкостью всасываются витамин D и некоторые стероидные гормоны, введенные перорально.

Преобладающими липидами лимфы являются триацилглицериды, даже тогда, когда жирные кислоты находятся в составе сложных эфиров других спиртов.

Желчные кислоты выполняют в организме 3 основные функции:

Эмульгируют жиры;

Активируют липазу;

Обеспечивают всасывание высших жирных кислот, моноглицеридов и холестерина.

Омыляемые липиды

Нейтральные жиры включают в себя сложные эфиры глицерина и жирных кислот. В организме играют роль структурного компонента клеток или запасного вещества («жировое депо»). В природе, за редкими исключениями, встречаются только полные эфиры глицерина- триацилглицерины (ТАГ). Твердые ТАГ называют жирами, жидкие - маслами. Простые ТАГ содержат остатки одинаковых кислот (тристеарин, триолеин), смешанные - различных.

Природные жиры и масла представляют собой смеси смешанных ТАГ. Их количественной характеристикой служит массовая доля отдельных кислот, а также аналитические константы - кислотное число, йодное число, число омыления, эфирное число (жировые числа).

Кислотное число - количество мг КОН, необходимое для нейтрализации свободных жирных кислот в 1 г жира. Увеличение к.ч. при хранении свидетельствует о происходящем в жире гидролизе, т.е. порче жира.

Йодное число - количество граммов йода, связываемое 100 г данного жира. Является количественной мерой ненасыщенности.

Число омыления - количество мг КОН, необходимое для нейтрализации как свободных, так и связанных с глицерином жирных кислот, содержащихся в 1 г жира.

От жирно-кислотного состава зависит ещё одна характеристика жира - температура плавления (табл. 2.2).

При хранении жиры под действием света, кислорода и влаги приобретают неприятный вкус и запах - прогоркают. Во избежание этого добавляют антиоксиданты. Наиболее важный среди них - витамин Е.

Воски - сложные эфиры жирных кислот и высших одноатомных или двухатомных спиртов. Число углеродных атомов у таких спиртов составляет от 16 до 22: цетиловый спирт (С16Н33ОН), мирициловый спирт (С30Н61ОН). Природные воски синтезируются живыми организмами и содержат до 50 % примесей свободных жирных кислот, красящих и душистых веществ. В воде воски нерастворимы, температуры плавления лежат в интервале от 40° до 90° С.

Воски выполняют в организме в основном защитную функцию. Они образуют защитную смазку на коже, шерсти, перьях; покрывают листья, стебли, плоды, семена, а также кутикулу наружного скелета у многих насекомых. Восковой налёт предохраняет от смачивания, высыхания и проникновения микробов. Удаление воскового слоя с поверхности плодов приводит к более быстрой их порче при хранении. Воски также являются главным липидным компонентом многих видов морского планктона. Широкое применение находил ранее содержащийся в черепной полости кашалота спермацет - как основа кремов и мазей. Его главные компоненты - цетилпальмитат и мирицилпальмитат. В настоящее время аналоги спермацета синтезированы искусственно. Овечью шерсть покрывает ланолин, использующийся в косметике. Пчелиный воск сочетает пластичность с кислотоустойчивостью, электро- и водоизоляционными свойствами. В отличие от нейтральных жиров воски более устойчивы к действию света и окислителей.

Молекула фосфолипидов образована остатками глицерина (или заменяющего его спирта сфингозина), жирных кислот, фосфорной кислотой, которая соединена сложноэфирной связью с азотсодержащей полярной группировкой. Фосфолипиды широко распространены в растительных и животных тканях, микроорганизмах, они являются преобладающей формой липидов. В отличие от нейтральных жиров фосфолипиды практически содержатся только в клеточных мембранах, очень редко в небольших количествах обнаруживаются в составе запасных отложений. Особенно велико их содержание в нервной ткани человека и позвоночных животных.

Простейшим глицерофосфолипидом является фосфатидная кислота (R 3 =H). В тканях организма она содержится в незначительных количествах, но является важным промежуточным соединением в синтезе ТАГ и фосфолипидов.

Наиболее представлены в клетках различных тканей фосфати- дилхолин (лецитин) и фосфатидилэтаноламин (кефалин), у которых роль R 3 выполняют аминоспирты: холин HO-CH 2 -CH 2 -N + (СН 3) 3 и этаноламин HO-CH 2 -CH 2 -NH 2 . Эти два глицерофосфолипида метаболически тесно связаны друг с другом. Они являются компонентами большинства биологических мембран.

В тканях находятся и другие глицерофосфолипиды. В фосфати- дилсерине R 3 соответствует аминокислоте серину. В фосфатидилино- зите фосфорная кислота этерифицирована шестиатомным спиртом инозитом. Фосфатидилинозиты представляют интерес как возможные предшественники простагландинов.

Сфинголипиды содержат те же компоненты, что и глицерофосфолипиды (жирная кислота, фосфат, R 3 - заместитель), но вместо глицерина они включают аминоспирт сфингозин:

Широко распространенный представитель этой группы - сфин- гомиелин. Особенно богата им нервная ткань, в частности, мозг.


Характерной особенностью фосфолипидов является их бифиль- ность. В фосфатидилхолинах, например, радикалы жирных кислот образуют два неполярных «хвоста», а фосфатная и холиновая группа - полярную «голову».

На границе раздела фаз такие соединения действуют как детергенты или ПАВ. О наличии фосфолипидов в биологических объектах можно судить по содержанию фосфора (реакция с молибдатом аммония) после минерализации образца. Основная часть липидов в мембранах представлена фосфолипидами, гликолипидами и холестерином. Липиды мембран образуют двухслойную структуру. Каждый слой состоит из сложных липидов, расположенных таким образом, что неполярные гидрофобные «хвосты» молекул находятся в тесном контакте друг с другом. Так же контактируют гидрофильные части молекул. Все взаимодействия имеют нековалентный характер. Два монослоя ориентируются «хвост к хвосту» так, что образующаяся структура двойного слоя имеет внутреннюю неполярную часть и две полярные поверхности.

Ганглиозиды обнаруживаются обычно на внешней поверхности клеточных мембран, особенно в нервных клетках. Они выполняют рецепторные функции. Отмечено распределение цереброзидов и ганг- лиозидов в тканях мозга: в составе белого вещества преобладают це- реброзиды, в составе серого - ганглиозиды.


Сульфолипиды (сулъфатиды) имеют структуру, аналогичную цереброзидам, с той лишь разницей, что у третьего атома углерода галактозы вместо гидроксильной группы - остаток серной кислоты. Сульфатиды обнаружены в миелине.

Неомыляемые липиды

Неомыляемые липиды так названы потому, что они не подвергаются гидролизу. Известны два типа неомыляемых липидов.

Высшие спирты (холестерин, витамины A, D, Е). Холестерин - производное циклопентанпергидрофенантрена (стерана). В кристаллическом виде - белое, оптически активное вещество, практически нерастворимое в воде. Холестерин - компонент мембран, исходное соединение для синтеза стероидных гормонов, желчных кислот, витамина D 3 . В растениях обнаружены фитостерины.

Высшие углеводороды (терпены). Молекулы построены путем объединения нескольких молекул изопрена. Придают растениям свойственный аромат, служат главными компонентами душистых масел. К терпенам принадлежат каротиноиды и каучук.

Рассмотрим особенности химического строения и биохимических функций наиболее важных представителей неомыляемых липидов - стероидов и терпенов.

Стероиды .

К стероидам относится обширный класс природных веществ, в основе молекул которых лежит конденсированный остов, называемый стераном. Наиболее распространенным среди многочисленных биологических соединений стероидной природы является холестерин.

Холестерин - одноатомный спирт (холестерол); он проявляет свойства вторичного спирта и алкена. Около 30% холестерина в организме содержится в свободном виде, остальное количество - в составе ацилхолестеринов, т.е. сложных эфиров с высшими карбоновыми кислотами, как насыщенными (пальмитиновой и стеариновой), так и ненасыщенными (линолевой, арахидоновой и др.), т.е. в виде ацилхолестеринов. Общее содержание холестерина в организме человека составляет 210-250 г. В больших количествах он содержится в головном и спинном мозге, является компонентом биомембран.

Важнейшая биохимическая функция холестерина обусловлена тем, что он играет роль промежуточного продукта в синтезе многих соединений стероидной природы: в плаценте, семенниках, желтом теле и надпочечниках происходит превращение холестерина в гормон прогестерон, который является начальным субстратом сложной цепи биосинтеза стероидных половых гормонов и кортикостероидов.

Другие пути использования холестерина в организме связаны с образованием витамина D и необходимых для пищеварения желчных кислот - холевой и 7-дезоксихолевой.

В организме холевая кислота, образуя амиды по карбонильной группе с глицином и таурином, превращается в глицинхолевую и таурохолевую кислоты.

Анионы этих кислот являются эффективными поверхностно-активными веществами. В кишечнике они участвуют в процессах эмульгирования жиров и тем самым способствуют их всасыванию и перевариванию.

Желчные кислоты используют в качестве лекарственных препаратов, предотвращающих образование и растворение уже имеющихся желчных камней, которые состоят из холестерина и билирубина.

Транспорт нерастворимых в жидкостях организма липидов, в том числе и холестерина, осуществляется в составе особых частиц - липопротеинов, представляющих собой сложные по составу комплексы с белками.

В крови обнаружено несколько форм липопротеинов, которые отличают по плотности: хиломикроны, липопротеины очень низкой плотности (ЛОНП), липопротеины низкой плотности (ЛНП) и липопротеины высокой плотности (ЛВП). Липопротеины можно разделить с помощью ультрацентрифугирования.

Липопротеины представляют собой сферические частицы, гидрофильная поверхность которых представляет собой слой ориентированных фосфолипидов и белков, а ядро образовано гидрофобными молекулами триацилглицеринов и эфиров холестерина.

Триацилглицерины и холестерин под действием специфических ферментов (липопротеинлипаза) высвобождаются из хиломикронов и затем потребляются жировой тканью, печенью, сердцем и другими органами.

При некоторых нарушениях обмена веществ или высокой концентрации холестерина в крови повышается концентрация ЛОНП и ЛНП, что ведет к их отложению на стенках сосудов (атеросклероз), в том числе в артериях сердечной мышцы (ишемическая болезнь сердца и инфаркт миокарда).

Терпены .

Терпены - это ряд биологически активных углеводородов и их кислородсодержащих производных, углеродный скелет которых состоит из нескольких звеньев изопрена С 5 Н 8 . Поэтому общая формула для большинства терпенов - (С 5 Н 8) n . Терпены могут иметь ациклическое или циклическое (би-, три- и полициклическое) строение. Структуры терпенов с общей формулой С 10 Н 16 - мирцен и лимонен:

В состав эфирных масел входят производные терпенов, содержащие гидроксильные, альдегидные или кетогруппы, - терпеноиды. Среди них большое применение находят ментол (содержится в масле мяты, от которой и получил свое название, от лат. menta - мята), линалоол (жидкость с запахом ландыша), цитраль, камфара.

К терпенам относятся смоляные кислоты, которые имеют общую формулу С 20 Н 30 О 2 и составляют 4/5 смолы хвойных растений (живица). При переработке живицы получают твердый остаток смоляных кислот - канифоль, которая служит сырьем для многих отраслей промышленности. Кроме того, терпеновые группировки (изопреноидные цепи) входят в структуру многих сложных биологически активных соединений, таких как каратиноиды, фитол и др.

Фитол в свободном виде в природе не встречается, но входит в состав молекул хлорофилла, витаминов А и Е и других биосоединений.

Каучук и гутта являются политерпенами, в молекулах которых остатки изопрена связаны "голова к хвосту".

Неомыляемые липиды. Понятие о стероидах: общий скелет стероидов, типы заместителей в стероидном скелете. Биологическая роль холестерина, желчных кислот, кортикостероидов, половых гормонов, витамина D, сердечных гликозидов. Понятие о простагландинах.

Неомыляемые липиды выполняют в организме роль низкомолекулярных биорегуляторов, к ним относятся терпены, стероиды, жирорастворимые витамины, простагландины.

Соединения, построенные из фрагментов изопрена, имеют общее

название изопреноиды. Под названием терпены объединяют ряд

углеводородов и их производных (спиртов, альдегидов, кетонов), углеродный

скелет которых построен из двух, трех и более звеньев изопрена. Сами

углеводороды называют терпеновыми, а их кислородсодержащие производные

– терпеноидами. Терпенами богаты эфирные масла растений (герань, роза,

лимон, лаванда и др.), смола хвойных деревьев, каучуконосы. Изопреноидная

цепь включена в структуру многих биологически активных соединений

(витамин А, каротины, витамины группы К, Е и др.).

В большинстве терпенов изопреновые фрагменты соединены друг с

другом по принципу «голова к хвосту» – изопреновое правило Ружичка (1921).

Общая формула большинства терпеновых углеводородов (С5Н8)n. Они

могут иметь ациклическое и циклическое (би-, три- и полициклические)

строение. Терпены, содержащие две изопреновые группировки, называют

монотерпенами, три – сесквитерпенами, четыре, шесть и восемь – ди-, три- и

тетратерпенами соответственно. Среди терпенов наиболее распространены

моно- и бициклические

Пинен – бициклический непредельный углеводород – важная составная часть скипидара, получаемого из хвойных деревьев. Камфора – бициклический кетон, применяется в медицине как стимулятор сердечно-сосудистой деятельности, получают из эфирного масла камфорного дерева. Тритерпен – ациклический сквален (С30Н50) – промежуточный продукт в биосинтезе холестерина. Особую группу тетратерпенов составляют каротиноиды – растительные пигменты. Некоторые из них (каротины) являются предшественниками витамина А. Каротин – растительный пигмент желто-красного цвета, в большом количестве содержится в моркови, томатах и сливочном масле. Известны три его изомера (α-, β- и γ-каротины), различающиеся химическим строением и биологической активностью. Все они являются предшественниками витамина А. Наибольшей биологической активностью обладает β-каротин, содержащий два β-иононовых кольца, поэтому при распаде в организме из него образуется две молекулы витамина А.

Стероиды

К стероидам относится обширный класс природных веществ, в основе которых лежит остов, конденсированный из четырех циклов, называемый стераном (циклопентанпергидрофенантреном).



В настоящее время известно около 20000 стероидов, более 100 из них применяются в медицине.

основные скелеты стероидов обозначают следующими тривиальными названиями: – холестан – корневое название скелета стеринов, – холан – название желчных кислот, – прегнан – название скелетов гестагенов и кортикостероидов, – эстран – название скелета эстрогенов, – андростан – название скелета мужских половых гормонов.

Стерины. Как правило, клетки очень богаты стеринами (стеролами). В их основе лежит скелет холестана. В качестве обязательного заместителя стерины содержат гидроксильную группу у С-3 (поэтому их называют стеролами).

Холестерин Наиболее распространенным стеролом является холестерин (холестерол), все кольца которого находятся в транс-сочленении. У него имеется двойная связь между С-5 и С-6, следовательно, он является вторичным циклическим ненасыщенным одноатомным спиртом.

Холестерин находится в животных, но не растительных жирах. В организме холестерин является источником образования желчных кислот, стероидных гормонов (половых и кортикостероидов). Продукт окисления холестерина – 7-дегидрохолестерин под действием УФ-лучей в коже превращается в витамин D3. Являясь компонентом клеточных мембран, неэтерифицированный холестерин вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны. В цитоплазме холестерин находится преимущественно в виде сложных эфиров с жирными кислотами. Таким образом, физиологические функции холестерина весьма разнообразны. Из общего количества холестерина, содержащегося в организме, только, примерно, 20% проступает с пищей, а основное его количество синтезируется в организме из активного ацетата. Нарушение обмена холестерина приводит к отложению его на стенках артерий, что ведет к уменьшению эластичности сосудов (атеросклерозу). Холестерин может накапливаться в виде желчных камней (желчнокаменная болезнь).

Желчные кислоты

В печени холестерин превращается в холановую кислоту, алифатическая боковая цепь которой у С-17 состоит из пяти атомов углерода и включает концевую карбоксильную группу. Холановая кислота подвергается гидроксилированию. В зависимости от числа и локализации гидроксильных групп различают четыре вида кислот: холевая (3,7,12-триоксихолановая), дезоксихолевая (3,12-диоксихолановая), хенодезоксихолевая (3,7-диокси-холановая) и литохолевая (3-оксихолановая). Наиболее распространена холевая кислота.

Стероидные гормоны

К стероидным гормонам относятся кортикостероиды и половые гормоны

(мужские и женские). Предшественником стероидных гормонов является

холестерин.

Кортикостероиды вырабатываются корой надпочечников (всего около

46, но физиологически активных – восемь). Кортикостероиды содержат скелет

прегнана, для них характерно наличие кетогруппы у С-3, кратной связи у С-4–

С-5 и гидроксила у С-11. У кортизола в положении С-17 находится второй

гидроксил. У альдостерона, в отличие от кортикостерона, метильная группа у

С-13 окислена в альдегидную. Кортикостерон и кортизон регулируют

углеводный обмен и, являясь антагонистами инсулина, повышают уровень

сахара в крови. Альдостерон регулирует водно-солевой обмен.

Мужские половые гормоны вырабатываются в основном в семенниках

и частично в яичниках и надпочечниках. В основе лежит скелет андростана,

поэтому гормоны называют андрогенами. Они стимулируют развитие вторичных половых признаков и сперматогенез. Главными мужскими

половыми гормонами являются андростерон и более активный тестостерон.

Тестостерон обладает также и выраженным анаболическим (тканеобразующим)

эффектом, обуславливая характерную мужскую мускулатуру. Препараты,

подобные по строению тестостерону, например, 19-нортестостерон,

используются культуристами и тяжелоатлетами для наращивания мышечной

ткани, т.к. они усиливают синтез белков. Однако 19-нортестостерон подавляет

сперматогенез.

Женские половые гормоны в настоящее время делят на две группы,

различающиеся химический структурой и биологической функцией: эстрогены

(главный представитель – эстрадиол) и прогестины (главный представитель –

прогестерон). Основным местом синтеза эстрогенов (от греч. oistros – страстное

влечение) являются яичники. Доказано также их образование в надпочечниках,

семенниках и плаценте. В основе эстрогенов лежит скелет эстрана.

Агликоны сердечных гликозидов Сердечные гликозиды – соединения стероидного ряда, у которых стероидная часть молекулы играет роль агликона (в этом случае его называют генином) некоторых моно- или олигосахаридов. В небольших количествах они возбуждают сердечную деятельность и используются в кардиологии, а в больших дозах являются сердечными ядами. Выделяют эти соединения из различных видов наперстянки (дигиталиса), ландыша, горицвета и др. растений. К генинам сердечных гликозидов растительного происхождения относятся дигитоксигенин и строфантидин.

Простагландины - это 20-углеродные жирные кислоты, содержащие пятичленное углеводородное кольцо. Различают несколько групп простагландинов, которые отличаются друг от друга наличием кетоносвой и гидроксильной групп в 9-м и 11-м положениях.

Основная задача этой кни­ги - дать возможность молодому педагогу исполь­зовать многолетний опыт преподавания предме­та «Музыкально-ритмическое воспитание актера» в Театральном училище им. Б. В. Щукина.

Рекомендованные нами методы обучения осо­бенно интересны для тех театральных учебных за­ведений, которые разделяют наши основные уста­новки относительно роли всех вспомогательных дисциплин в общем педагогическом процессе вос­питания актера.

Мы стоим за связь всех вспомогательных дисци­плин с основной - мастерством актера.

Нередко бывает, что студенты, успешно зани­мающиеся на уроке танцем, сценическим движени­ем, музыкой, выказывают полную беспомощность, когда приходится применить свои знания в профес­сиональной деятельности. Мы видим, что актер в ролях движется напряженно, танцует неловко, поет плохо, неритмичен. Причина этого, по наше­му мнению, в недостаточной связи вспомогатель­ных дисциплин с мастерством актера.

Танец или пение - не вставной номер в спекта­кле. Это связанное с ним действие, обогащающее сценический образ. Связь между учебными предме­тами не может возникать случайно, когда это понадобится режиссеру, работающему над диплом­ным спектаклем. Вся методика специальных предметов должна быть построена с учетом стрем­ления к единой цели - всестороннему гармониче­скому воспитанию человека-актера.

Если система К. С. Станиславского кладется в основу профессионального воспитания актера, то и музыкальное воспитание нельзя отрывать от этой системы, и методика преподавания должна строиться в соответствии с ней.

Не всегда легко бывает убедить студента в том, что он должен обладать большими знаниями в обла­сти общественных наук, истории театра, литерату­ры, изобразительного искусства, музыки; владеть выразительной речью и гибкостью голоса, хорошо двигаться, уметь регулировать свой мышечный ап­парат и координировать движения; быть музыкаль­ным и ритмичным в широком толковании понятия «ритм» на драматической сцене. Мы по многолет­нему опыту знаем, что студенты обычно уделяют серьезное внимание только одному предмету - ак­терскому мастерству, относясь иногда пренебре­жительно к так называемым вспомогательным дис­циплинам специального цикла. Эту неверную установку следует обязательно пресечь с первых же дней учебы. Оценку по актерскому мастерству следует давать с учетом успеваемости по всем предметам.

Мы считаем, что необходима связь вспомогатель­ных дисциплин не только с основной, но также и между собой. Ведь легко могут объединиться танцевальные, вокальные и речевые задания с музы­кально-ритмическими, тем более что ритм- неотъ­емлемый элемент не только в музыке, но и в движе­нии и в речи.

Жизнь показала нам, что музыкально-ритмиче­ское воспитание может объединяться и с такими предметами, как «История искусств», «История костюма», и даже с такими, как «Язык» и «Ма­неры».

Не могло не повлиять на методику преподавания всех предметов специального цикла в нашем учи­лище то обстоятельство, что, опираясь на основные положения системы Станиславского, педагоги не могли не внести свое, «вахтанговское» в педаго­гическую работу. Создавались новые разделы рабо­ты, рождались новые формы прохождения про­граммы актерского мастерства, окрашенные известным своеобразием. Это заставило нас внести и в метод музыкально-ритмического воспитания свое особое понимание предмета.

Конечная цель музыкально-ритмического воспи­тания - овладение сценическим ритмом, способно­стью управлять своим ритмическим поведением на сцене и использовать это умение для действий в различных предлагаемых обстоятельствах.

Мы придерживаемся того убеждения, что к овла­дению сценическим ритмом можно прийти через музыкальный ритм, так как в последнем наиболее ярко выражена его природа. На основе последова­тельного и логического перехода от ритма в музыке к ритму на сцене мы и строим нашу систему музы­кально-ритмического воспитания актера.

Проблема сценического ритма - не такое про­стое понятие, как кажется на первый взгляд. Если опытному актеру это явление знакомо и он свобод­но ориентируется в нем, то студенту театральной школы оно может показаться не вполне понятным. Ему легче начинать с музыкального ритма.

Ведь музыкальный и сценический ритмы очень близки друг к другу.

Великий мастер сцены К. С. Станиславский, признавая родственную связь между сценическим и музыкальным ритмом, часто пользовался на своих занятиях по актерскому мастерству музыкальной терминологией.

Г. Кристи, близко знакомый с работой К. С. Ста­ниславского в оперном театре, говорит о том, что К. С. начал заниматься оперой ради драмы, ради постижения некоторых основ драматического ис­кусства и пришел к выводу, что искать их нужно в музыке.

И действительно, элементы музыкальной выра­зительности очень близки элементам сценической выразительности и синтез их дает возможность проникать как в содержание музыкального произ­ведения, так и в замысел сценического действия.

Таким образом, сближая две разновидности од­ной и той же сущности, мы конкретизируем поня­тие сценического ритма.

Некоторые трудности представляет задача сде­лать понятным для студентов, что им придется действовать ритмично не только тогда, когда на сцене звучит музыка, но и тогда, когда она отсут­ствует, и что ритмичность - качество, которое ак­тер может воспитать в себе не только с помощью музыки, но и другими средствами.

Если это первоначально может показаться не вполне ясным, то на более позднем этапе сцениче­ского воспитания студенты это поймут.

Важность проблемы ритма на драматической сцене должна глубоко проникнуть в сознание мо­лодежи, желающей посвятить свою жизнь работе в театре. Учащиеся должны понять, что конечная цель музыкально-ритмического воспитания заклю­чается в том, чтобы научиться в любой момент на сцене, звучит или не звучит музыка, находить нуж­ное ритмическое самочувствие.

Курс занятий по музыкально-ритмическому вос­питанию в Театральном училище им. Б. В. Щу­кина рассчитан на два года обучения.

Первый год - подготовительный - посвящен изучению элементов музыкальной выразитель­ности.

Второй год - синтетический - посвящен изу­чению принципов использования приобретенных навыков в условиях сценической деятельности.

Неомыляемые липиды – группа негидролизующихся природных веществ, растворимых в неполярных органических растворителях (бензол, хлороформ) и не растворимых в воде. К ним относятся терпеноиды и стероиды . Терпеноиды имеют в основном растительное происхождение, а стероиды – животное. И терпеноиды, и стероиды построены из фрагментов изопрена, поэтому их общее название – изопреноиды .

ТЕРПЕНОИДЫ

Терпеноиды – обширный класс природных кислородсодержащих соединений, производных терпенов. Терпены – это углеводороды общей формулы (C 5 H 8) n , где n≥ 2. Углеводородный скелет всех терпеноидов построен из остатков изопрена
(2-метилбутадиена-1,3).


Терпеноиды широко растпространены в природе. Они выделены из цветковых растений семейств Amarantaceae, Lamiaceae, Apiaceae, Asteraceae и др., а также некоторых мхов и грибов. Терпеноиды в больших количествах содержатся в эфирных маслах мяты перечной, эвкалипта, герани, розы, лимона, ромашки аптечной, смоле хвойных деревьев.

К терпеноидам относятся растительные пигменты, смолы, фитогормоны, сапонины, жирорастворимые витамины.

В большинстве терпеноидов изопреновые фрагменты соединены по принципу «голова к хвосту» (т.н. «изопреновое правило», впервые сформулированное О. Валлахом и подтвержденное Л. Ружичкой). Например:


(В химии терпеноидов принято пользоваться краткими формулами, без обозначения символов углерода). Наряду с таким построением, но гораздо реже, наблюдается порядок соединения «голова к голове». Известны также природные вещества терпенового типа, структура которых не отвечает изопреновому правилу, но эти исключения немногочисленны.

Терпеновые углеводороды общей формулы (C 5 H 8) n классифицируют по количеству изопреновых звеньев в молекуле на монотерпены (n=2), сесквитерпены (n=3), дитерпены (n=4), тритерпены (n=6), тетратерпены (n=8). Другой вид классификации – по количеству циклов в молекуле. Терпены и терпеноиды могут быть ациклическими (цикл отсутствует), моноциклическими, бициклическими и полициклическими.

Примером ациклических терпеноидов является спирт геранил и продукт его окисления – альдегид гераниаль (цитраль). Они содержатся в эфирных маслах герани, лимона и розы.

Цитраль используется в глазной практике как противовоспалительное средство.

Примером моноциклических терпенов является лимонен – компонент эфирного масла лимона и скипидара. При гидрировании лимонена образуется ментан, производным которого является ментол.


Ментол присутствует в эфирном масле перечной мяты. Ментол обладает антисептическим, болеутоляющим и успокаивающим действием. Он входит в состав валидола, мазей, применяемых при лечении ревматизма и при насморке.

В промышленности ментол получают из м-крезола. Вначале проводят реакцию алкилирования по Фриделю-Крафтсу с получением тимола, который затем гидрируют:


Как непредельное соединение лимонен способен к реакции гидратации. При полной гидратации в кислой среде, которая протекает по правилу Марковникова, образуется двухатомный спирт терпин:


Терпин применяется в медицине в виде гидрата как отхаркивающее средство.

Представителями бициклических терпенов являются пинан и камфан:

Ненасыщенным производным пинана является α-пинен – составная часть скипидара. Как непредельный углеводород α-пинен вступает в реакции присоединения (например, с бромной водой) и окисления:

Производным камфана является кетон камфора, которую применяют в медицине как стимулятор сердечной деятельности.

При бромировании камфоры образуется α-бромкамфора, которая используется как успокаивающее средство:

Особую группу терпенов составляют растительные пигменты каротиноиды. Они широко распространены в природе, играют роль витаминов или предшественников витаминов, участвуют в процессах фотосинтеза. Большинство каротиноидов являются тетратерпенами. В их молекулах присутствуют длинные сопряженные системы, поэтому они окрашены. Каротиноиды окрашивают морковь в оранжево-красный цвет (carrot – морковь), придают различную окраску плодам и ягодам, присутствуют во всех зеленых частях растений. Для каротиноидов характерна транс-конфигурация двойных связей.

β-Каротин – растительный пигмент оранжевого цвета, содержащийся в моркови, томатах:

Многие каротиноиды являются провитамином А, то есть соединениями, которые в организме человека и животных способны превращаться в витамин А.


Витамин А относится к жирорастворимым витаминам.

И каротиноиды, и витамин А неустойчивы и легко разрушаются при нагревании, под действием кислорода воздуха и света.

Витмин А (ретинол) – важнейший витамин, влияющий на рост человека, животных и птиц. Главными признаками авитаминоза А являются заболевание глаз (куриная слепота), исхудание, понижение сопротивляемости организма инфекциям. Перерождение и ороговение эпителия в различных органах вследствие недостатка витамина А приводит к заболеванию дыхательных путей, к желудочно-кишечным и инфекционным заболеваниям, к нарушению деятельности ЦНС, образованию камней в почках и мочевом пузыре и другим патологиям. К жирорастворимым относятся также витамины группы Е и К.

Витамины группы Е – токоферолы – присутствуют в растительных маслах. Витамины группы Е можно рассматривать и как производные гетероциклической системы хромана, и как производные двухатомного фенола гидрохинона. Они выполняют роль антиоксидантов по отношению к ненасыщенным липидам, предохраняя их от пероксидного окисления, участвуют в синтезе белков, тканевом дыхании, в регуляции развития зародыша и функций эпителия половых желез.


Витамины группы К являются антигеморрагическим фактором, они нормализуют процесс свертываемости крови. Витамины группы К – производные 2-метил-1,4-нафтохинона. В природе данная группа витаминов представлена несколькими соединениями. Витамин К 1 встречается в высших растениях, витамин
К 2 – в организмах животных и бактерий.


В медицине применяется синтетический водорастворимый аналог витаминов группы К – викасол, который повышает свертываемость крови:


СТЕРОИДЫ

Стероиды – большая группа природных соединений как животного, так и растительного происхождения, объединенная общностью углеродного скелета и путями биогенеза.

Соединения стероидной структуры широко распространены в природе. Они найдены практически во всех организмах – от одноклеточных до млекопитающих. Стероидами выполняются самые разнообразные функции (регуляция углеводного обмена – глюкокортикоиды, обмена минеральных солей – минералокортикоиды, процессов размножения – половые гормоны и т.д.). Стероиды появились в организмах на самых ранних стадиях их эволюции.

Почему же природа выбрала именно эти соединения в качестве химических регуляторов биологических процессов? Возможно, из-за высокой устойчивости их молекул и из-за высокой информационной емкости, которая обусловлена многообразием производных и стереоизомеров.

В настоящее время известно около 20 тыс. различных стероидов и свыше 100 из них применяются в медицине.

Все стероиды являются производными циклопентанпергидрофенантрена, или стерана, или гонана. Кольца принято обозначать как A, B, C и D.

Стереоизомерия стерана. Все циклогексановые кольца в структуре стерана находятся в конформации кресла. Сочленены они могут быть по-разному. Рассмотрим типы сочленения колец на более простом примере – декалине:


Более энергетически выгодным является транссочленение колец.

В структуре стероидов кольца B и C и C и D всегда транс-сочленены (за исключением сердечных гликозидов и ядов жаб – в них C и D цис-сочленены). Кольца A и B могут иметь как цис-, так и транссочленение:


Классификация стероидов. Выделяют следующие группы стероидов:

Стерины

Желчные кислоты

Гормоны коры надпочечников (кортикостероиды)

Половые гормоны (мужские и женские)

Агликоны сердечных гликозидов.

Для родоначальных структур каждой группы стероидов приняты тривиальные названия, т.к. использование международной номенклатуры привело бы к очень сложным названиям.


Стерины

В основе структуры всех стеринов лежит углеводород холестан.

В молекуле холестана присутствуют две так называемые ангулярные (угловые) метильные группы в положениях 10 и 13 и углеводородный радикал из восьми атомов углерода в положении 17.

Наиболее широко распространенным стерином является холестерин. Он присутствует в нервной ткани и надпочечниках, в крови, желчи. В организме присутствует и в свободном виде, и в виде сложных эфиров с высшими карбоновыми кислотами (по спиртовому гидроксилу), например, холестерина пальмитат.

Только 20% от общего количества холестерина поступает в организм с пищей, основное количество холестерина синтезируется в печени и кишечнике из уксусной кислоты (синтез включает более 20 стадий). Нарушение уровня холестерина (нормальная концентрация в крови ~2г/л) ведет к различным нарушениям. Повышение концентрации холестерина ведет к отложению его на стенках сосудов, к снижению их эластичности и развитию атеросклероза (как следствие – ишемическая болезнь сердца, нарушение мозгового кровообращения). При пересыщении желчи холестерином развивается желчнокаменная болезнь. Значительное падение концентрации холестерина в плазме крови тоже может вести к заболеваниям: гипертиреозу, аддисоновой болезни (поражению коры надпочечников), истощению.

На уровень холестерина влияет состав пищевых жиров. Употребление животных жиров ведет к повышению концентрации холестерина. На 1 г насыщенных жиров должно приходиться 2 г ненасыщенных.

Эргостерин – 24-метил-холестатриен-5,7,22-ол-3 (содержится в дрожжах) является провитамином D 2 , т.к. при его облучении образуется этот витамин.


Витамины группы D регулируют обмен кальция и фосфора. Их недостаток ведет к рахиту.

Желчные кислоты

В основе структуры желчных кислот лежит углеводород холан.

Желчные кислоты вырабатываются печенью при окислении холестерина и выделяются с желчью в кишечник. Особенностью структуры желчных кислот является цис-сочленение колец A и B. Наиболее распространены холевая кислота и ее производные.

Холевая кислота является 3,7,12-тригидроксихолановой кислотой.

В желчи содержится не свободная холевая кислота, а ее производные – амиды с глицином или таурином:


гидрофильная часть


липофильная часть

В кишечнике и желчи гликохолевая и таурохолевая кислоты присутствуют в виде солей. Они являются дифильными соединениями, т.к. имеют в структуре гидрофильную и гидрофобную части. Желчные кислоты обладают поверхностно-активными свойствами, действуют как эмульгаторы.

Сами желчные кислоты плохо растворимы в воде, могут откладываться в виде камней в желчном пузыре.

Кортикостероиды

Кортикостероиды являются производными углеводорода прегнана.

Кортикостероиды синтезируются в коре надпочечников из холестерина. В чрезвычайно малых концентрациях влияют на процессы жизнедеятельности. Удаление коры надпочечников ведет к смерти.

Гормоны коры надпочечников регулируют водно-солевой обмен (минералокортикоиды) и углеводный обмен (глюкокортикоиды).

Кортикостерон – 11,21-дигид-
рок-сипрегнен-4-дион-3,20. Является глюкокортикоидом, антагонистом инсулина (повышает уровень сахара).

Дезоксикортикостерон – 21-гидро-
ксипрегнен-4-дион-3,20 является минералокортикоидом.


Глюкокортикоид гидрокортизон (11,17,21-тригидроксипрегнен-4-дион-3,20) и синтетический аналог глюкокортикоидов преднизолон (11,17,21-тригидроксипрегнадиен-1,4-дион-3,20) используются как противовоспалительные и антиаллергические средства при лечении ревматоидного артрита, бронхиальной астмы и т.д. Используются в медицине в виде ацетатов по первичному спиртовому гидроксилу в положении 21.

Андрогенные гормоны

Мужские половые гормоны являются производными андростана.

Главными андрогенными гормонами являются андростерон и тестостерон. Они влияют на развитие вторичных половых признаков, выработку спермы, оказывают активизирующее действие на синтез ДНК и биосинтез белка, потенцируют сгорание углеводов и жирных кислот с образованием энергии.

В медицинской практике тестостерон применяется в виде пропионата (сложные эфиры обладают более длительным действием в организме):


Реакция ацилирования протекает по спиртовому гидроксилу. В качестве ацилирующего агента можно использовать хлорангидрид или ангидрид пропионовой кислоты.

Женские половые гормоны

Основой структуры эстрогенных гормонов является эстран (обратите внимание на отсутствие ангулярной метильной группы в положении 10).

Эстрогены контролируют менструальный цикл у женщин. Представителями эстрогенных гормонов являются эстрадиол и эстрон:


Эстрадиол применяется в медицинской практике в виде дипропионата.


Для ацилирования можно использовать также пропионовый ангидрид.

К женским половым гормонам относятся также гестагены (гормоны желтого тела яичников, гормоны беременности). Гестагены являются производными прегнана. Наиболее активным гестагеном является прогестерон:


Сердечные гликозиды

Сердечные гликозиды – это соединения, в которых стероидная часть молекулы является агликоном (несахарной частью) гликозидов, образованных моно- или олигосахаридами. В небольших дозах сердечные гликозиды используются в кардиологии. Они увеличивают силу и уменьшают частоту сердечных сокращений, улучшают тканевой обмен сердечной мышцы. В больших дозах сердечные гликозиды являются ядами. В мировой медицинской практике широко используют препараты, получаемые из наперстянки (дигиталиса), строфанта, ландыша, горицвета.

Например, агликоном ланатозида А, выделяемого из наперстянки шерстистой, является дигитоксигенин:

Характерной особенностью агликонов сердечных гликозидов является цис-сочленение колец A и B и C и D, а также наличие ненасыщенного пяти- или шестичленного лактонного кольца в положении 17. Углеводная часть молекулы содержит от одного до пяти моносахаридных остатков. О-гликозидная связь с углеводным остатком осуществляется за счет спиртового гидроксила в положении 3.